

© 2025 Nasdaq, Inc. All Rights Reserved. Private and Confidential

Nasdaq Calypso
Messaging Framework Integration
Guide

Version 17 - 18

Revision 6.0
February 2022
Approved

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 2 / 33
Private and Confidential

Copyright © 2025, Nasdaq, Inc. All rights reserved.

All content in this document is owned, or licensed, by Nasdaq, Inc. or its affiliates (‘Nasdaq’). Unauthorized use is
prohibited without written permission of Nasdaq.

While reasonable efforts have been made to ensure that the contents of this document are accurate, the document
is provided strictly “as is”, and no warranties of accuracy are given concerning the contents of the information
contained in this document, including any warranty that the document will be kept up to date. Nasdaq reserves the
right to change details in this document without notice. To the extent permitted by law no liability (including liability
to any person by reason of negligence) will be accepted by Nasdaq or its employees for any direct or indirect loss
or damage caused by omissions from or inaccuracies in this document.

Document History

Revision Published Summary of Changes

1.0 January 2015 First edition for version 3.10.0 of Data Uploader.

2.0 October 2015 Updated Trade Workflow FCM.

3.0 April 2017 Add Support to start all components in process.

4.0 October 2017 Added Messaging Server Configuration.

5.0 December 2018 Updates

6.0 February 2022 Updated for version 17.0.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 3 / 33
Private and Confidential

Table of Contents

Introduction

Configuration Files

2.1 <Service>Service.properties

2.2 datauploaderExternalURI.xml

2.3 datauploaderQueueNames.properties

2.4 gatewayservice.properties

Message Workflow

Trade Workflow

4.1 TRADE_WORKFLOW_FCMHRC.wf

4.2 TRADE_WORKFLOW_HRC.wf

Starting the Messaging Components

5.1 Start All Components in a Single JVM

5.2 Start Messaging Server

5.2.1 Messaging Server Configuration
5.2.2 Clearing Member Solution without Head Room Check
5.2.3 Clearing Member Solution with Head Room Check

5.3 Start Incoming Feed

5.4 Start Feed Translator

5.5 Start Outgoing Feed

5.6 Start Data Persistor

5.7 Additional Components

Incoming Feed

Feed Translator

Outgoing Feed

Data Persistor

9.1 Exception Handling in Data Persistor

9.2 Exception Recovery

9.3 DATAPERSISTORMSG Workflow

Update Manager Engine

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 4 / 33
Private and Confidential

10.1 Clearing Member Solution with Head Room Check

10.1.1 Trade
10.1.2 Collateral / Limit Update

10.2 Clearing Member Solution without Head Room Check

10.3 Engine Configuration

10.4 Exception Handling in Update Manager Engine

10.4.1 Trades
10.4.2 Collateral Update & Limit Update

Task Station

Troubleshooting

Appendix

13.1 FCMHRC Flow

13.2 FCM Flow

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 5 / 33
Private and Confidential

Introduction
This section describes the configuration setup for any external module using Messaging Framework.

Messaging Framework is based on real time asynchronous messaging using JMS and Camel. Messaging
Framework can be used in the

• Intra Day Support for Clearing Member with Credit check (limit and initial margin) (aka as Head Room Check
– FCMHRC Flow)

• Intra Day Support for Clearing Member without Risk (aka as FCM Flow).

Messaging Framework uses the following components.

• Messaging Server: This component acts as a Message Bus for the other components of the Messaging
Framework, Active MQ is used as the Message Bus. All the components of the messaging framework use this
Message bus to exchange messages and process them. Messaging server can be started using the scripts as
explained below.

• Incoming Feed: Incoming Feed is the first component, which consumes messages from the CCP. This
component ensures that the message complete, it validates and extracts the Unique ID of the message to
ensure that the messages with the same id are processed in the order they are received and then passes to the
bus to be consumed by the next component which is Feed Translator.

• Feed Translator: Feed Translator component translates the incoming message using the Data Uploader
framework and creates an in memory trade, which is now ready for Credit Check. Feed Translator sends the
message to the HRC or to the Persistor based on whether Credit Check is part of the solution.

• Data Persistor: The job of this component is to save the objects into Calypso’s Transactional Core. If for some
technical reason the persistor is not able to persist the object successfully, the persistor creates a BO Message
of type DATAPERSISTORMSG so that the message can be reprocessed at a later time. In this scenario, if
Persistor receives any subsequent messages for the same Trade, it will create PENDING BO Messages for
these messages as well and queues them to be processed in order.

• Outgoing Feed: Outgoing Feed generates the acknowledgement (Consent Granted/Consent Refused) and
sends it back to the CCP.

• Update Manager Engine: This component is a Calypso Engine which listens to Real Time Events from Calypso.
The job of this component track Transactional Core events and replay them to the Message Bus. If the Update
Manager is not able to send the message to the Message Bus, a) if the event belongs to a trade, the Update
Manager Engine moves the trade to SUBMIT_FAILED status so that the trade can be submitted at a later time.
b) If the event belongs to an object which does not have a workflow (like Limit Update / Collateral Update) then
the Update Manager engine creates a BO Message with type (UPLOADEREXCEPTIONMSG) so that the
message can be reprocessed at a later time.

 [Note: The subsequent sections talk about configuration needed for enabling Messaging. In addition to
these, you do need to carry out steps for individual Feeds as documented in the respective

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 6 / 33
Private and Confidential

documentation. E.g. for CME some business configuration e.g. mappings is still needed. Some areas are
replaced. E.g. Trade Workflow and BO Message workflow should not be done as per the CME integration
guide. These should be done from the Messaging Integration document.]

In short, read both the documents and if a config is provided in both (Exch Feed and Messaging), use the config
from Messaging setup.

For more details on the FCM and FCMHRC flows please refer to the flow diagrams in the Appendix.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 7 / 33
Private and Confidential

Configuration Files
The following configuration files are required by Messaging Framework, this section will describe all properties in
the configuration file that messaging framework uses. All the configuration files should be deployed to client and
server environments.

 [Important Note

 You need to copy all the configuration files you want to modify from <calypso
home>/client/resources to <calypso home>/tools/calypso-templates/resources.

 In some cases, you need to rename the configuration file from <file name>.sample to <file name>.

 Then you need to re-deploy the application servers.]

The IncomingFeed component is run using a command line parameter ‘-service’ and expects a parameter which is
mandatory. The value of this parameter is used to identify the <>Service.properties with the value prefixed to the
name of the properties file.

E.g., if the parameter is set as –service CME, IncomingFeed looks for a property file CMEService.properties with the
following properties.

uploadSource=CME

The Value of this attribute indicates from where the message originates; do not change the value of this

attribute in the files supplied by Calypso. This value is used by the translator to identify the mappings in the

Calypso Mapping Window.

uploadFormat=

The Value of this attribute indicates the format; do not change the value of this attribute in the files

supplied by Calypso. This value is used by the Data Uploader framework to identify the translator to translate

the message. It is valid for this attribute to be left empty in certain cases.

ExternalURIPrefix=CMESource

The Value of this attribute specifies the config name [Spring bean] to use from the file

datauploaderExternalURI.xml This XML file contains Messaging definitions to connect to the CCP using JMS, IBM

MQ, etc. The config name used in this XML file to create the Messaging definitions is the value to be assigned

to this attribute. [See the next section for more details.]

ExternalIncomingURI=

Please change the value of this attribute to the queue name from which the CCP sends the message to the

Clearing Member.

Provide a sample of what the queue would look like

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 8 / 33
Private and Confidential

ExternalOutgoingURI=

Please change the value of this attribute to the queue name which the CCP expects the acknowledgement

BusinessFlow=HRC

The Value of this attribute indicates whether the Credit Check (Collateral and Limit Check) is part of the

Clearing Member Solution. The Possible values are a) FCM (No Head Room Check) b) HRC (Head Room Check is used

for Risk). Note HRC will be replaced by FCMHRC in the next release (to allow for CCPHRC flows) This value is

important as the Trade workflow is different for these solutions. And based on this, the the Update manager

listens to different Trade Status Messages

Features=AuditOn,AutoRejectOff

AuditOn specifies that a copy of all Incoming & Outgoing messages should be saved as BO Messages. When set to

AuditOff, in cases where an error or warning occurs during message processing, the BO Message will still be

saved. Please do not change this without advice from Calypso

AutoRejectOff is an advanced feature and Calypso advice should be sought before changing this value.

ExternalIncomingURIParams=

The value should be left empty unless a value is provided by Calypso out of the box. This attribute is

mandatory to be present even if this value is empty

This XML file contains the connectivity information to the Messaging service used by the CCP.

The following snippet shows a section of the file that is supplied by calypso which explains the connectivity to CME
using IBM MQ.

Please Change only the following parameters (highlighted in the snippet below) and leave the rest of the properties
as provided by calypso.

• Hostname: to the host name where the messaging server (IBM MQ) is running.

• Port: to the port on which the messaging server is running.

• queueManager: Name of the Queue Manager on the Messaging Server (IBM MQ)

• channel: Name of the Channel used to connect to the Messaging Server (IBM MQ)

<bean id="CMESource" parent="wmq">

 <property name="concurrentConsumers" value="${INCOMING_CONSUMERCOUNT:1}"/>

 <property name="maxConcurrentConsumers" value="${INCOMING_CONSUMERCOUNT:1}"/>

 </bean>

 <bean id="wmq" class="org.apache.camel.component.jms.JmsComponent">

 <property name="connectionFactory" ref="cachedConnectionFactory"/>

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 9 / 33
Private and Confidential

 </bean>

 <bean id="cachedConnectionFactory" class="org.springframework.jms.connection.CachingConnectionFactory">

 <property name="targetConnectionFactory" ref="jmsConnectionFactory"/>

 <property name="sessionCacheSize" value="10"/>

 </bean>

 <bean id="jmsConnectionFactory" class="com.ibm.mq.jms.MQQueueConnectionFactory">

 <property name="transportType" value="1"/>

 <property name="hostName" value="PLEASE CHANGE TO THE HOST"/>

 <property name="port" value="PLEASE CHANGE TO THE PORT"/>

 <property name="queueManager" value="PLEASE CHANGE TO THE QUEUE MANAGER"/>

 <property name="channel" value="PLEASE CHANGE TO THE CHANNEL NAME"/>

</bean>

Note that the reference used to define the connectivity in the definition <bean id="CMESource" parent="wmq">
should be set as the value of ‘ExternalURIPrefix’ property in <Service>Service.properties as explained in the
previous section.

This configuration file contains the queue names which the messaging framework components such as Incoming
Feed, Feed Translator and Data Persist or consume messages from, and is used by internal components only. The
user should not change anything in the properties file and use it the way calypso makes it available.

InternalURIPrefix=upload

FeedTranslator.queue=calypso.queue.translator

OutgoingFeed.queue=calypso.queue.outgoing

DataPersistor.queue=calypso.queue.persistor

TradeVar.queue=calypso.queue.tradesToValue

All the components of the messaging framework use data uploader to translate or create BO Messages for audit
purposes, hence all the configuration files required by data uploader framework should be properly deployed to both
the client and server-side environments. Please refer to data uploader integration guide for setup instructions of the
same.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 10 / 33
Private and Confidential

Message Workflow
The following message workflows should be imported using the Calypso Workflow Configuration window. More
details of these message types and their workflows are explained in the sections below.

• INCOMINGFEEDMSG.wf (Used to create BO Message for every incoming message, allows the user to
reprocess if the message cannot be processed)

• OUTGOINGFEEDMSG.wf (Used to create BO Message for every outgoing message, allows the user to
reprocess if the message cannot be processed)

• UPLOADEREXCEPTIONMSG.wf (Used to create BO Message when the Update Manager Engine was not able to
send the Collateral and Limit Update events back to the Message Bus)

• DATAPERSISTORMSG.wf (Used by the Data Persistor to create Bo Message when the Persistor was not able to
persist the object due to technical reasons)

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 11 / 33
Private and Confidential

Trade Workflow
The following trade workflows should be imported using Calypso Workflow Configuration window.

Used in the Clearing Member Solution with Head Room Check used for Risk.

Though the workflow is configurable the following statuses are important and should not be changed. The Update
Manager Engine listens to these status events and propagates the message to the Head Room Check component
via the Message Bus.

• PENDING_HRC

• PENDING_HRC_REJECTION

• PENDING_HRC_REVERT

• PENDING_HRC_TERMINATE

• PENDING_HRC_AMEND

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 12 / 33
Private and Confidential

Used in the Clearing Member Solution without Head Room Check.

Though the workflow is configurable the following statuses are important and should not be changed. The Update
Manager Engine listens to these status events and propagates the message to the OutgoingFeed component via
the Message Bus.

• PENDING_ACCEPTANCE

• PENDING_REJECTION

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 13 / 33
Private and Confidential

Starting the Messaging Components
Messaging Framework requires many processes to be run depending on the FCM Solution being used, however the
following processes are common across the solution.

• Messaging Server

• Incoming Feed (one for each exchange CME/LCH)

• Feed Translator

• Data Persistor

• Outgoing Feed

You can start all these integration components in a single JVM process. However please note that each process
can be started as a separate JVM process as described in below sections.

All the messaging components including the Messaging server can be started by running the following batch file:
<Calypso_Home>/client/bin/allFcmMessagingComponents.bat for Windows OS.

<Calypso_Home>/client/bin/allFcmMessagingComponents.sh for UNIX like OS.

The Script has following options:

• -startMessageBus true/false: defaulted to false so that the Messaging Server can be started separately as
described in next section, but by passing true, the messaging server is also started and there is no need to
start it separately.

• -service LCH,CME,CCE: takes comma separated values of services, this parameter is optional and the Incoming
Feeds for each exchange can be started separately as explained below, but when used the incoming feeds for
the respective exchanges are also started in the single JVM. If this property is not used, the Incoming Feeds
are not started and they have to be started separately as usual.

And the components Feed Translator, Data Persistor, Outgoing Feed are started in the same JVM.

If the Clearing Member Solution is using Head Room Check for Limits then a different start-up script supplied by the
Head Room Check module should be used, which starts all the FCM based components and the limit components
like tradeVar & head room check.

This Process can also be controlled (start/stop) using the Technical Operations Dashboard, by adding as an
Application.

The following screenshots describe on how to add this as an application in the Operations Dashboard.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 14 / 33
Private and Confidential

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 15 / 33
Private and Confidential

Once the Application is added in the Dashboard, it can be started, stopped and the logs can be viewed from the
Operations Dashboard screen in the browser.

The Next Sections explain on starting these processes each in a separate JVM.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 16 / 33
Private and Confidential

The Messaging server is used to store the incoming messages in queues so that the messaging framework
components can process them asynchronously. Active MQ is used as the Messaging Bus.

By default, the messaging server will run with the following host and port - tcp://localhost:61917

The following parameters can be passed while running the UploadMessagingServer as VM arguments as shown
below:

com.calypso.apps.startup.StartUploadMessagingServer -D<parameterName=value>

Parameter Description

DU_MESSAGING_SERVER_JMX_HOST Indicates the JMX host

Default = localhost

DU_MESSAGING_SERVER_JMX_PORT Indicates the JMX port

Default = 2001

DU_MESSAGING_SERVER_PERSISTENT True to persist incoming messages or false otherwise

[NOTE: If set to ‘false’, the incoming messages are not
persisted at the messaging server level, and if the
application is shutdown due to technical failures, these
messages may be lost]

Default = true

DU_MESSAGING_SERVER_PERSISTER_DIRECTORY Only applies if DU_MESSAGING_SERVER_PERSISTENT =
true

The directory where the messages and server persistence
logs are created

This folder should be monitored closely as it may fill the
disk space

Default = ${user.home}/Calypso/DU_MESSAGING_SERVER

DU_MESSAGING_SERVER_QUEUE_STORAGE The memory usage of storage queue

Default = 3GB

DU_MESSAGING_SERVER_SYSTEM_STORAGE The memory usage of system queue

Default = 20GB

DU_MESSAGING_SERVER_TEMP_STORAGE The memory usage of temporary queue

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 17 / 33
Private and Confidential

Parameter Description

Default = 300MB

DU_MESSAGING_SERVER_URL Indicates the Messaging Server URL

Default = tcp://localhost:61917

Run the following batch file: <Calypso_Home>/client/bin/StartUploaderMessagingServer.bat for Windows OS.

Run the following batch file: <Calypso_Home>/client/bin/StartUploaderMessagingServer.sh for UNIX like OS.

The System property DU_MESSAGING_SERVER_URL should be used to customize the messaging server host and
port. If the components of the messaging solution (like Incoming Feed) are run in different machines, then this
System property should be set in all the machines.

Run the following batch file: <Calypso_Home>/client/bin/StartHeadroomCheckEventServer.bat for Windows OS.

Run the following batch file: <Calypso_Home>/client/bin/StartHeadroomCheckEventServer.sh for UNIX like OS.

To customize the host and port of the Head room check event server, the System property HRCEVENTSERVERURL
should be used. Please make sure that the System property DU_MESSAGING_SERVER_URL is set to the same
value. If the components of the messaging solution (like Incoming Feed) are run in different machines, then these
System properties should be set in all the machines.

Run the following batch file: <Calypso_Home>/client/bin/Start<Service>IncomingFeed.bat on Windows OS.

Run the following batch file: <Calypso_Home>/client/bin/Start<Service>IncomingFeed.sh on UNIX like OS.

Run the following batch file: <Calypso_Home>/client/bin/StartFeedTranslator.bat on Windows OS.

Run the following batch file: <Calypso_Home>/client/bin/StartFeedTranslator.sh on UNIX like OS.

OutgoingFeed is used to send the acknowledgement to the CCP (CME/ LCH).

Run the following batch file: <Calypso_Home>/client/bin/StartOutgoingFeed.bat on Windows OS.

Run the following batch file: <Calypso_Home>/client/bin/StartOutgoingFeed.sh on UNIX like OS.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 18 / 33
Private and Confidential

DataPersistor persists objects into calypso database.

Run the following batch file: <Calypso_Home>/client/bin/StartDataPersistor.bat on Windows OS.

Run the following batch file: <Calypso_Home>/client/bin/StartDataPersistor.sh on UNIX like OS.

Please note that if Clearing Member solution with Head Room Check is being used, few extra processes like
TradeVaR and HeadRoomCheck need to be started. Please refer to the Head Room Check Solution Document for
more details.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 19 / 33
Private and Confidential

Incoming Feed
The purpose of this component is to receive messages from the external world into calypso (basically in the
Clearing Member Solution, receives messages from the CCP).

Once the message is successfully received, IncomingFeed parses the message to get some useful information like
the business key that uniquely identifies the message, so that all the incoming messages from the external world
are processed sequentially by the rest of the messaging framework.

When an exception occurs in processing the incoming message the Incoming Feed, would send a message to the
Data Persistor component to create a BO Message of type INCOMINGFEEDMSG so that the message could be
reprocessed once the exception is addressed.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 20 / 33
Private and Confidential

Feed Translator
The purpose of this component is to translate the external message to a format understood by Calypso which is
the data uploader xml format. If the translation is successful, an in memory trade object is created, and now the
trade is ready to be processed by the Risk system to check for limits and collateral. Feed Translator sends the
message to the Head Room Check component or to the Data Persistor based on whether risk is part of the solution.

When an exception occurs in translating the incoming message the Feed Translator, would send a message to the
Data Persistor component to create a BO Message of type INCOMINGFEEDMSG so that the message could be
reprocessed once the exception is addressed.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 21 / 33
Private and Confidential

Outgoing Feed
Once the incoming message is handled successfully by all the components of the messaging framework and the
Trade is accepted / rejected, the Acknowledgement is now ready to be sent out using the Outgoing Feed
Component. The trade acceptance/rejection will come from either the Head Room Check component or the Trade
Workflow, based on whether risk is part of the solution.

When an exception occurs in sending the acknowledgement message to the external world (CCP), this component
would send a message to the Data Persistor component to create a BO Message of type OUTGOINGFEEDMSG so
that the message could be reprocessed once the exception is addressed.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 22 / 33
Private and Confidential

Data Persistor
The Data Persistor component’s main purpose is to persist objects into calypso data base. There is a designated
queue in the Message Bus, to which rest of the components can send messages (all different types of messages like
trades, BO messages, collateral, and limits updates and so on). Data Persistor identifies the right persistor class
based on the object passed and invokes the persistor to persist the objects. At times there can be a collection of
objects passed as a single message to the persistor in which case the persistor persists all the objects as a single
transaction so that either all the objects are persisted or none are persisted.

As the persistor tries to persist an object, failures or exceptions might occur because of various reasons, like the
workflow is not configured or some other technical reason. Data Persistor is able to handle all these exception
scenarios and provide robust functionality.

Data persistor handles exceptions similar to how the Update Manager handles the exceptions, which is by creating
a BO Message and persist to data base and create task station entries so that the users are notified and would be
able to reprocess the message using the BO Message workflow.

Exceptions are recovered by reprocessing the BO Messages of type DATAPERSISTORMSG by applying
REPROCESS action from within the Task Station. This will generate an event, which will be picked up by the Update
Manager, and in turn will be sent to the Data Persistor component to retry the save action.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 23 / 33
Private and Confidential

When a DATAPERSISTORMSG with PENDING status is reprocessed using REPROCESS action, Update Manager
Engine listens to this event and sends the message to the Data Persistor via the Message Bus to be processed as
explained above.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 24 / 33
Private and Confidential

Update Manager Engine
Update Manager is a component that listens to real time events from Calypso and sends messaging to

• Head room check when needed to check limits and collateral

• Outgoing Feed to send Acknowledgement to CCP

• Reprocessing of Failed Messages

Update Manager is only interested in the BO Messages of the following message types.

• INCOMINGFEEDMSG

• OUTGOINGFEEDMSG

• UPLOADEREXCEPTIONMSG

• DATAPERSISTORMSG

Whenever a REPROCESS/RESEND message event for the above mentioned message types are generated, Update
Manager will listen to that event and send to the appropriate component based on the message type.

Update Manager Engine listens to the following events:

Though the trade workflow is configurable with different states, in order for the Clearing Member Solution to work
properly, the Update Manager listens to the trades with following statuses.

• PENDING_HRC (meaning that the trade is PENDING from Head Room Check to be either accepted or rejected)

• PENDING_HRC_REJECTION (meaning that the trade is Force Rejected by user and the OutgoingFeed
component should send a rejection message to the CCP)

• PENDING_HRC_REVERT (meaning that the trade is Refused by the other party and the trade is waiting on the
Head Room Check to make sure that if there is limit already allocated, that should be reverted)

• PENDING_HRC_TERMINATE (meaning that a TERMINATE is to be applied on the trade, and the trade is pending
with Head Room Check for the allocated limit to be reverted)

• PENDING_HRC_AMEND (meaning that an AMEND is received and the trade is pending with Head Room Check
to update the reserved limit for this trade)

Whenever a trade event with the above-mentioned status is generated, Update Manager listens to that event and
sends the event to the Head Room Check component via the Message Bus, to check for Limits & Collateral. The
exception to this rule is if the action applied is UPDATE. In which case Update Manager will ignore that event.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 25 / 33
Private and Confidential

Collateral and Limit Update events are created when the user update the collateral and limit objects in the system,
in which case the Update Manager sends these events to the necessary components via the Message Bus.

In case where the Head Room Check is not being used and the user is using some other system to apply limit and
collateral checks, the following 2 statuses are very important.

• PENDING_ACCEPTANCE (to send consent granted message to CCP)

• PENDING_REJECTION (to send consent refused message to CCP)

Whenever a trade event with the above-mentioned status is generated, Update Manager will listen that event and
send it to outgoing for sending acknowledgement. The exception to this rule is if the action applied is UPDATE. In
which case Update Manager will ignore that event

The UpdateManagerEngine is configured in the Engine Manager of Web Admin.

For Clearing Member solution with Head Room Check, please add the following Events.

PSEventHeadroomCheckCollateralUpdate

PSEventHeadroomCheckLimitUpdate

The following configuration files should be deployed to the engine server after being customized as specified in
previous sections:

• datauploaderQueueNames.properties

• <Service>Service.properties

• gatewayservice.properties

The Update Manager Engine is run as part of the Engine server.

As explained above the job of the Update Manager Engine is to listen to real time events and send those messages
to the designated Queue on the Message Bus, so that the respective consumer component processes the
message.

If for whatever reason the engine cannot send the message to the bus (e.g. technical failure or the Bus is down),
then depending upon the type of event the Engine would handle it as described in the sections below.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 26 / 33
Private and Confidential

In the case of a submit failure for a trade, the trade will be moved to a status SUBMIT_FAILED. This scenario can
arise for all those statuses for which the Update Manager listens.

In Clearing Member Solution with Head Room Check these statuses are:

• PENDING_HRC

• PENDING_HRC_REJECTION

• PENDING_HRC_REVERT

• PENDING_HRC_TERMINATE

• PENDING_HRC_AMEND

In Clearing Member Solution without Head Room Check these statuses are:

• PENDING_ACCEPTANCE

• PENDING_REJECTION

There is a transition from each of the above statuses to a SUBMIT_FAILED status, and Update Manager moves the
trade to SUBMIT_FAILED status by applying an action FAILED_TO_SUBMIT. When doing that, Update Manager will
also add a keyword to the trade to indicate the Submit action applied in the keyword with name ‘SubmitAction’, so
that the user does not have to know from which state the trade has moved to SUBMIT_FAILED; regardless of how
the trade came to SUBMIT_FAILED, the user just has to apply REPROCESS action on the trade for the trade to be
submitted and the Update Manager will know exactly which status to move the trade back to, by applying the
action in the keyword ‘SubmitAction’ resulting in the trade moving to one of the statuses mentioned above. This will
trigger Update Manger to send the message again to the appropriate component, and this cycle repeats until it is
successful. By moving the trade to a separate SUBMIT_FAILED status, it will avoid a scenario where a user tries to
submit the same trade multiple times.

Another scenario is where the trade is submitted successfully to the Head Room Check component, and it rejects
the trade due to some technical reason, but from a business perspective it cannot reject the trade. For example,
the Head Room Check component rejects a trade received in a Clearing Confirmed auto-consent message, which
by definition must be accepted since it has been auto-consented.

In these cases, the Data Persistor would move the trade to another failed status such as REVERT_FAILED,
TERMINATE_FALIED, and AMEND_FAILED by applying the REJECT action, if the result is successful a respective
business accept action is applied to move the trade to the appropriate status. By doing so the user will be able to
see clearly from the trade status that a REVERT/AMEND/TERMINATE has been submitted to HRC but HRC rejected
with some reason which can be found in the trade keyword ‘HRCRejectReason’, and then resubmit the trade to
HRC by applying SUBMIT action.

The following workflow diagram depicts these scenarios, and the transitions are highlighted for reference.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 27 / 33
Private and Confidential

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 28 / 33
Private and Confidential

Collateral and Limit Update objects do not have any workflow like trades, and hence when the Update Manager
fails to send these objects to Head Room Check component, Update Manager would create a BO Message of type
UPLOADEREXCEPTIONMSG with its own workflow and persist the event as the payload of the advice document
attached to the message. In this case, the user should REPROCESS the message, so that it can be resubmitted to
the Update Manager, to resend it to the Head Room Check component.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 29 / 33
Private and Confidential

Task Station
The following tab in Task Station should be added to monitor the Trade (Update Manager), INCOMINGFEEDMSG,
OUTGOINGFEEDMSG objects.

Please add the same for the message types UPLOADEREXCEPTIONMSG and DATAPERSISTORMSG.

For Trades that are FAILED_TO_SUBMIT: EX_ERROR, SUBMIT_FAILED_TRADE.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 30 / 33
Private and Confidential

Troubleshooting
This section contains details on how to troubleshoot any issues you may encounter with the messaging solution
components.

The following Log categories should be used across all the components of the messaging solution

UPLOADER (for general uploader framework logging)

UPLOADER_STATS (logs the time taken for things like translation and persistence)

MESSAGE_TRACE (Used to trace a particular message across the messaging components to trouble shoot which
components a particular message has reached and if a message failed to process this log will tell you which
component it failed)

Example:

Start processing... | TraceId : 141807959863102 | MessageType : RequestConsent | JMSXGroupID : 85433 | From

Endpoint :upload://calypso.queue.persistor | From Route: rDataPersistor | current route : rDataPersistor |

current endPoint: upload://calypso.queue.persistor | exchangeId : ID-vhunglt-54469-1418078340854-0-8 |

exchange.getIn().getMessageId() : ID:vhunglt-54477-1418078342308-1:1:2:1:2

Finished processing... | TraceId : 141807959863102 | MessageType : RequestConsent | JMSXGroupID : 85433 | From

Endpoint :upload://calypso.queue.persistor | From Route: rDataPersistor | current route : rDataPersistor |

current endPoint: upload://calypso.queue.persistor | exchangeId : ID-vhunglt-54498-1418078346242-0-4 |

exchange.getIn().getMessageId() : ID:vhunglt-54477-1418078342308-1:1:2:1:2

The TraceId is unique for that message across all the components.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 31 / 33
Private and Confidential

Appendix

The following 2 slides show the end-to-end flow for the FCMHRC solution.

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 32 / 33
Private and Confidential

The following 2 slides show the end-to-end flow for the FCM solution

Nasdaq Calypso
Messaging Framework Integration Guide / Version 17 - 18

February 2022 Revision 6.0 / Approved Page 33 / 33
Private and Confidential

