
Integrated Clearing
CDML Developer Guide

Oct 23, 2014

ABSTRACT
A guide on the CDML framework and translators

CDML Developer Guide CDML v3 spec 2014-10-23

1 Summary
This document briefly describes the CDML framework, its purpose and design, and how
to write CCP EOD report translators to produce CDML documents that will be handled by
the aforementioned framework.

It is aimed to developers and other personnel involved in creating and managing CDML
content, and it requires some basic XML, XPath, XSD, Java, Spring and Clearing
knowledge. It is also recommended to have a copy of the CDML schemas1.

The CDML framework is still work in progress. You should expect
changes in future Clearing releases, and have always the latest copy
of all published documents.

1 See 16 Related documentation

C a l y p s o I n t e g r a t e d C l e a r i n g 2/118

CDML Developer Guide CDML v3 spec 2014-10-23

2 Table of Contents
1 Summary..2
3 Changes...6
4 Definitions..7
5 What is CDML?...8
6 The CDML flow: translation and processing..9
7 CDML types..11

7.1 General characteristics..11
7.2 Schema namespaces...12

7.2.1 urn:cdml:schema:common:types...12
7.2.2 urn:cdml:schema:margin:initialMargin...14

7.2.2.1 initialMarginReport document..14
7.2.2.2 initialMarginData element..15
7.2.2.3 measures element...17
7.2.2.4 initialMarginPositionAccountData element...................................18

7.2.3 urn:cdml:schema:position:tradeValuation..19
7.2.3.1 tradeValuationReport document..19
7.2.3.2 trade element..20
7.2.3.3 tradeCashFlowData element..21
7.2.3.4 tradeValuationData element..22

8 Generating content: CDMLProducer...23
8.1 NEW EOD vs ITD..24
8.2 Producer types...25

8.2.1 FileLoaderProducer...25
8.2.2 NEW AbstractSourceTranslationProducer..25

8.2.2.1.1 AbstractTabularTranslationProducer......................................26
8.2.2.1.2 NEW AbstractXMLTranslationProducer...................................26

8.3 The CDML_TRANSLATE_TO_CDML ScheduledTask.....................................27
8.3.1 Arguments..28

8.3.1.1 Base Folder..28
8.3.1.2 CDML Processing..28
8.3.1.3 NEW Intraday flag..28

8.3.2 CCP subfolders..28
8.3.2.1 NEW Arbitrary CCP subfolders...29

8.3.3 CDMLProducer discovery mechanism...30
8.3.4 CDML storage...32
8.3.5 ST execution summary...33

9 Writing a CDML translator..35
9.1 NEW Source and SourceFileOrganizer...36
9.2 Tabular translators...38

9.2.1 Use case: CME IRD translator...38
9.2.1.1 Translation instructions..38
9.2.1.2 Source and source file organizer..40
9.2.1.3 Parser implementations...41

9.2.1.3.1 SourceParser...41
9.2.1.3.2 StreamingSourceParser...42

C a l y p s o I n t e g r a t e d C l e a r i n g 3/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.1.4 Translation processors..43
9.2.1.4.1 CMEInitialMarginTranslationProcessor...................................44
9.2.1.4.2 CMETradeValuationTranslationProcessor...............................46

NEW AggregatingFlowGroupBuilder..47
9.2.1.5 Orchestrating the process: the CDMLProducer implementation. .48

9.2.1.5.1 Filtering sources..48
9.2.1.5.2 Row acceptor...49
9.2.1.5.3 Providing parser implementations...49
9.2.1.5.4 Source file presence check..50

9.2.1.6 The Spring context...51
9.2.2 Use case: LCH IRD translator..54

9.2.2.1 Translation instructions..54
9.2.2.2 Source and source file organizer..55
9.2.2.3 Translation processors..57

9.2.2.3.1 LCHInitialMarginTranslationProcessor....................................57
9.2.2.3.2 Populating the report from different sources: the OSA/ISA
accounts case...61
9.2.2.3.3 LCHTradeValuationTranslationProcessor................................62
9.2.2.3.4 Parsing coupons..66

9.2.2.4 LCHProducer..69
9.2.2.4.1 Filtering sources..69
9.2.2.4.2 Row acceptor...70
9.2.2.4.3 Parser implementations..71
9.2.2.4.4 Spring context...72

9.3 NEW XML translators...73
9.3.1 From input files, to javax.xml.transform.Source instances.................75
9.3.2 DefaultXMLTranslationProducer and ResourceMergingSourceProvider
...77
9.3.3 Use case: EUREX IRD translator..77

9.3.3.1 Spring file...78
9.3.3.2 XSLT instructions..81

10 Processing CDML..84
10.1 The CLEARING_PROCESS_FROM_CDML ScheduledTask...........................84

10.1.1 Arguments..85
10.1.1.1 CDML Report Type..85
10.1.1.2 Pricing Environment...85

10.1.2 Execution summary..86
10.2 Processing the tradeValuationReport...88

10.2.1 Trades with flows in multiple currencies...88
10.2.2 Flow/fee settle date override..90

10.3 Processing the initialMarginReport..92
10.3.1 Requirement vs. native margins...92
10.3.2 Locating contracts..97
10.3.3 MARGIN_CALL measure..99
10.3.4 Intraday processing..100

11 Appendix A: messaging (logging and TaskStation).......................................101
11.1 MessageSinkConfigurable...103

C a l y p s o I n t e g r a t e d C l e a r i n g 4/118

CDML Developer Guide CDML v3 spec 2014-10-23

11.2 CDML scheduled task MessageSink...105
12 Appendix B: CDMLViewer...106
13 Appendix C: CDML translator distribution and artifact structure..................109
14 Appendix D: CDML translator deploy strategies...110

14.1 Calypso V13...110
14.2 Calypso V14 and after...111

14.2.1 Patching the distribution...111
14.2.2 Using custom-extensions..111

15 Appendix E: CDML versioning..115
15.1 Version as defined in the specification..115
15.2 Version in human readable form...115
15.3 Version when naming XSD and other CDML related files......................115
15.4 CDML version history...117

16 Related documentation..118

C a l y p s o I n t e g r a t e d C l e a r i n g 5/118

CDML Developer Guide CDML v3 spec 2014-10-23

3 Changes
Mar 02, 2014 Eduardo Corral Started initial version for the CDML v2 specification

Mar 17, 2014 Eduardo Corral Updates after Alec Sullivan's feedback
• Added CDML versioning section
• Typos/grammar fixes

Oct 23, 2014 Eduardo Corral Updated for 2.11.0/3.6.0 releases, including
• Updated CDML specification to v3
• Added ITD (intraday) flag
• XML-to-XML translation producers

C a l y p s o I n t e g r a t e d C l e a r i n g 6/118

CDML Developer Guide CDML v3 spec 2014-10-23

4 Definitions
CCP Central Counterparty

CDML Clearing Data Markup Language

CUP Calypso Upgrade Package

EOD End Of Day

IM Initial Margin

ITD Intraday

MCC Margin Call Configuration (also Collateral Config)

OOTB Out Of The Box

OS Operating System

TV Trade Valuation

VM Variation Margin

XSD XML Schema Definition

C a l y p s o I n t e g r a t e d C l e a r i n g 7/118

CDML Developer Guide CDML v3 spec 2014-10-23

5 What is CDML?
One of the fundamental pillars of the Integrated Clearing solution is the ITD and EOD
CCP/member report processing. All clearing members, and clearing clients, feed
their systems with margin, trade, market data and other kinds of information provided
by CCPs/members. This information takes different forms, splitted into several reports,
and with different encoding standards.

CDML is a collection of XML based formats that aims to normalize this reporting, in
a CCP-agnostic fashion. The final goal is to be able to record all relevant ITD and EOD
CCP/member information in a clear and unified way, with no CCP/member-specific
structures or terminology.

This document will focus on the CCP and clearing member relationship, but most
concepts can also apply to the one between clearing members and client clearing
customers.

C a l y p s o I n t e g r a t e d C l e a r i n g 8/118

CDML Developer Guide CDML v3 spec 2014-10-23

6 The CDML flow: translation and processing
The CDML flow can be divided into two simple phases: translation and processing.

During translation, CCP-specific content is sorted, aggregated or split, and transformed
into CCP-agnostic CDML content.

Illustration 1: Translation and storage from two different CCPs

Once CDML is stored, it is ready for processing. During this phase, the content is

C a l y p s o I n t e g r a t e d C l e a r i n g 9/118

CCP1

Report1

Report2

Report4

Report3

CDML
translator
for CCP1

CDML
storage

CDML
report1

CDML
report2

CCP2
Report1

Report3

Report2

CDML
translator
for CCP2

CDML
report1

CDML
report2

CDML Developer Guide CDML v3 spec 2014-10-23

analyzed, and downstream core Calypso objects, like trades or PLMarks, are created.

Illustration 2: CDML content is retrieved from storage, and used for object creation

C a l y p s o I n t e g r a t e d C l e a r i n g 10/118

CDML
storage CDML

report1

CDML
report2

CDML
processing

core

Trades

PLMarks

CDML Developer Guide CDML v3 spec 2014-10-23

7 CDML types

7.1 General characteristics
As mentioned before, CDML is a collection of XML based formats. Each of them is
defined in its own schema, although they share datatypes and a common
structure.

All CDML report types are capable of simultaneously representing information from
multiple CCPs, multiple members, clearing services (products) and accounts.

All information contained in a single CDML report pertains to the same business date:
such date is one of the fundamental characteristics of the report (see below).

C a l y p s o I n t e g r a t e d C l e a r i n g 11/118

7.2 Schema namespaces
The following are all the schemas currently defined within the CDML specification.

7.2.1 urn:cdml:schema:common:types

URI urn:cdml:schema:common:types

Sample prefix2 cdml

Description Common CDML datatypes namespace

The common namespace also defines the CDMLReportType, which is the mandatory base type for all CDML reports. From
the schema itself

<complexType name="CDMLReportType">

 <annotation>

 <documentation>Base type for all CDML reports</documentation>

 </annotation>

 <sequence>

 <element name="reportDate" type="cdml:ReportDateType" minOccurs="1" maxOccurs="1">

 <annotation>

 <documentation>Business date on which the report data is valid</documentation>

 </annotation>

 </element>

 <element name="intraday" type="boolean" minOccurs="0" maxOccurs="1" default="false">

 <annotation>

 <documentation>Indicates if the data in this report has been generated intraday. The lack

 of this flag should be interpreted as it being false</documentation>

 </annotation>

 </element>

 </sequence>

 <attribute name="modelVersion" type="cdml:ReportModelVersionType" use="required">

 <annotation>

 <documentation>Report specification version number</documentation>

 </annotation>

 </attribute>

 <attribute name="version" type="cdml:ReportVersionType" use="optional">

2 Namespace prefix to be used in this document. Prefixes are arbitrary, see http://en.wikipedia.org/wiki/XML_namespace#Namespace_declaration

 <annotation>

 <documentation>Report content version number</documentation>

 </annotation>

 </attribute>

 <attribute name="generationDateTime" type="cdml:ReportGenerationDateTimeType" use="optional">

 <annotation>

 <documentation>Report generation timestamp</documentation>

 </annotation>

 </attribute>

</complexType>

All CDML reports then share

• A well defined, ISO 8601 report date, which represents the business date the report information is related to.

• NEW An optional intraday flag to signal downstream processes that the data gathered is from ITD sources.

• A model version, which is the CDML specification version. This attribute will be used for migration and verification
purposes.

• An optional version, which is the iteration of the report content, for that specific type and date. It is
recommended not to include it when generating CDML, as its usage is reserved to the CDML framework. See CDML
storage.

• An optional generation timestamp. See CDML storage.

All of the following CDML snippets are to be considered sample data, and shouldn't be interpreted
as actual production content.

7.2.2 urn:cdml:schema:margin:initialMargin

URI urn:cdml:schema:margin:initialMargin

Sample prefix cdml-im

Description initialMarginReport related datatypes and root element
definition

The initialMarginReport contains information about margin requirements, broken down by CCP, member, service
and account. An arbitrary number of margin measures per account are supported, as well as native currency measure
breakdown for each of the former.

7.2.2.1 initialMarginReport document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<cdml-im:initialMarginReport

 modelVersion="3"

 version="1"

 generationDateTime="2013-11-14T22:29:08.112Z"

 xmlns:cdml="urn:cdml:schema:common:types"

 xmlns:cdml-im="urn:cdml:schema:margin:initialMargin">

 <cdml:reportDate>2013-11-11</cdml:reportDate>

 <cdml:intraday>true</cdml:intraday>

 <cdml-im:initialMarginData>

 ...

 </cdml-im:initialMarginData>

 <cdml-im:initialMarginData>

 ...

 </cdml-im:initialMarginData>

 <cdml-im:initialMarginData>

 ...

 </cdml-im:initialMarginData>

</cdml-im:initialMarginReport>

Element/attribute Description

initialMarginReport Root element, defines the type of report

initialMarginReport/@modelVersion CDML specification version (fixed)

initialMarginReport/@version CDML instance version

initialMarginReport/@generationDateTime ISO8601 datetime

initialMarginReport/reportDate ISO8601 date

initialMarginReport/intraday NEW ITD flag

initialMarginReport/initialMarginData Each initialMarginData element represents a single margin
account/service combination at the CCP, and groups the margin
measures for the given combination, at the given date

7.2.2.2 initialMarginData element

<cdml-im:initialMarginData>

 <cdml-im:CCP>LCH</cdml-im:CCP>

 <cdml-im:clearingService>IRD</cdml-im:clearingService>

 <cdml-im:memberId>CC1</cdml-im:memberId>

 <cdml-im:initialMarginAccountId>CALYPSOGIG3</cdml-im:initialMarginAccountId>

 <cdml-im:segregationAccount>C</cdml-im:segregationAccount>

 <cdml-im:measures>

 <cdml-im:measure requirementCcy="EUR" type="MAINTENANCE_REQUIREMENT" amount="5083145.176745">

 <cdml-im:measureBreakdown nativeCcy="USD" amount="125228.97" conversionFX="0.8"/>

 <cdml-im:measureBreakdown nativeCcy="EUR" amount="345876.23" conversionFX="1.0"/>

 <cdml-im:measureBreakdown nativeCcy="GBP" amount="3434878.3487" conversionFX="1.35"/>

 </cdml-im:measure>

 <cdml-im:measure requirementCcy="EUR" type="INITIAL_MARGIN" amount="4935687.34"/>

 </cdml-im:measures>

 <cdml-im:initialMarginPositionAccountData>

 <cdml-im:initialMarginPositionAccount>

 <cdml-im:positionAccountId>CALYPSOGIG3_1</cdml-im:positionAccountId>

 <cdml-im:measures>

 <cdml-im:measure requirementCcy="EUR" type="MAINTENANCE_REQUIREMENT" amount="4848268.853745"/>

 </cdml-im:measures>

 </cdml-im:initialMarginPositionAccount>

 <cdml-im:initialMarginPositionAccount>

 <cdml-im:positionAccountId>CALYPSOGIG3_2</cdml-im:positionAccountId>

 <cdml-im:measures>

 <cdml-im:measure requirementCcy="EUR" type="MAINTENANCE_REQUIREMENT" amount="234876.323"/>

 </cdml-im:measures>

 </cdml-im:initialMarginPositionAccount>

 </cdml-im:initialMarginPositionAccountData>

</cdml-im:initialMarginData>

Element/attribute Description

initialMarginData Represents a single CCP/service/member/margin account combination

initialMarginData/CCP Short name of the CCP

initialMarginData/clearingService Traditionally called product type, each service is normally an aggregation
of similar cleared products than can be margined together (although it's
not limited to this definition)

initialMarginData/memberId FCM/SCM identifier at the CCP

initialMarginData/initialMarginAccountId Identifier of the margin account at the CCP

initialMarginData/segregationAccount Evolution of the segregation type concept, it represents a higher level
grouping, compared to the margin account. Depending on the CCP this
can result in just House/Client segregation, or in an actual account id.

initialMarginData/measures Margin measures element

initialMarginData/initialMarginPositionAccountData Optional margin position account breakdown

7.2.2.3 measures element

Measure breakdown is not mandatory, unless native margins are to be imported.

<cdml-im:measures>

 <cdml-im:measure requirementCcy="EUR" type="MAINTENANCE_REQUIREMENT" amount="5083145.176745">

 <cdml-im:measureBreakdown nativeCcy="USD" amount="125228.97" conversionFX="0.8"/>

 <cdml-im:measureBreakdown nativeCcy="EUR" amount="345876.23" conversionFX="1.0"/>

 <cdml-im:measureBreakdown nativeCcy="GBP" amount="3434878.3487" conversionFX="1.35"/>

 </cdml-im:measure>

 <cdml-im:measure requirementCcy="EUR" type="INITIAL_MARGIN" amount="4935687.34"/>

</cdml-im:measures>

Element/attribute Description

measure Single margin measure

measure/@requirementCcy Currency the CCP issues the call in

measure/@type Measure type

measure/@amount Amount in the requirement currency

measure/measureBreakdown Single currency component of the measure breakdown

measure/measureBreakdown/@nativeCcy Native currency

measure/measureBreakdown/@amount Amount in the native currency

measure/measureBreakdown/@conversionFX Multiplicative rate to be applied to the native currency to obtain the
amount in the requirement currency

7.2.2.4 initialMarginPositionAccountData element

Optional breakdown of margin data into separate position account level components. CCP, clearing service, member id
and segregation account are implicit, as this element is always nested within an initialMarginData one.

<cdml-im:initialMarginPositionAccountData>

 <cdml-im:initialMarginPositionAccount>

 <cdml-im:positionAccountId>CALYPSOGIG3_1</cdml-im:positionAccountId>

 <cdml-im:measures>

 <cdml-im:measure requirementCcy="EUR" type="MAINTENANCE_REQUIREMENT" amount="4848268.853745"/>

 </cdml-im:measures>

 </cdml-im:initialMarginPositionAccount>

 <cdml-im:initialMarginPositionAccount>

 <cdml-im:positionAccountId>CALYPSOGIG3_2</cdml-im:positionAccountId>

 <cdml-im:measures>

 <cdml-im:measure requirementCcy="EUR" type="MAINTENANCE_REQUIREMENT" amount="234876.323"/>

 </cdml-im:measures>

 </cdml-im:initialMarginPositionAccount>

</cdml-im:initialMarginPositionAccountData>

Element/attribute Description
initialMarginPositionAccountData Single breakdown element allowed within an

intialMarginData one
initialMarginPositionAccountData/initialMarginPositionAccount A single position account element. Each

initialMarginPositionAccountData can hold an
arbitrary number of position account elements

initialMarginPositionAccountData/initialMarginPositionAccount/positionAccountId Position account id
initialMarginPositionAccountData/initialMarginPositionAccount/measures Measures for this position account. See 7.2.2.3

7.2.3 urn:cdml:schema:position:tradeValuation

URI urn:cdml:schema:position:tradeValuation

Sample prefix cdml-tv

Description tradeValuationReport related datatypes and root element
definition

The tradeValuationReport is a trade activity, flow and valuation report, in which the fundamental element information is
the cleared trade.

7.2.3.1 tradeValuationReport document

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<cdml-tv:tradeValuationReport

 modelVersion="1"

 version="17"

 generationDateTime="2013-11-13T23:07:21.872Z"

 xmlns:cdml="urn:cdml:schema:common:types"

 xmlns:cdml-tv="urn:cdml:schema:position:tradeValuation">

 <cdml:reportDate>2013-10-14</cdml:reportDate>

 <cdml-tv:trade>

 ...

 </cdml-tv:trade>

 <cdml-tv:trade>

 ...

 </cdml-tv:trade>

 <cdml-tv:trade>

 ...

 </cdml-tv:trade>

 ...

 <cdml-tv:trade>

 ...

 </cdml-tv:trade>

</cdml-tv:tradeValuationReport>

Element/attribute Description

tradeValuationReport Root element, defines the type of report

tradeValuationReport/@modelVersion CDML specification version (fixed)

tradeValuationReport/@version CDML instance version

tradeValuationReport/@generationDateTime ISO8601 datetime

tradeValuationReport/reportDate ISO8601 date

tradeValuationReport/intraday NEW ITD flag3

tradeValuationReport/trade Each trade element represents a cleared trade reported by the CCP in the
reportDate

7.2.3.2 trade element

<cdml-tv:trade>

 <cdml-tv:clearedTradeId>8984078249</cdml-tv:clearedTradeId>

 <cdml-tv:CCP>LCHFXCLEAR</cdml-tv:CCP>

 <cdml-tv:clearingService>NDF</cdml-tv:clearingService>

 <cdml-tv:memberId>CC3</cdml-tv:memberId>

 <cdml-tv:positionAccountId>CALYPSOGIG5</cdml-tv:positionAccountId>

 <cdml-tv:segregationAccount>CLIENT</cdml-tv:segregationType>

 <cdml-tv:tradeCashFlowData>

 <cdml-tv:flow settleCcy="USD" type="NPV_ADJUSTED" amount="-220273.13"/>

 <cdml-tv:flow settleCcy="USD" type="NPV_REV" amount="-549622.43"/>

 <cdml-tv:flow settleCcy="USD" type="PAI" amount="-576560.05"/>

 <cdml-tv:flow settleCcy="USD" type="CASH_DELIVERY" amount="0"/>

 </cdml-tv:tradeCashFlowData>

 <cdml-tv:tradeValuationData>

 <cdml-tv:valuation settleCcy="USD" type="NPV_ADJUSTED" amount="-220273.13"/>

 <cdml-tv:valuation settleCcy="USD" type="GAMMA" amount="24669.02"/>

 <cdml-tv:valuation settleCcy="USD" type="THETA" amount="0.207"/>

 <cdml-tv:valuation settleCcy="USD" type="RHO" amount="202005.74"/>

 <cdml-tv:valuation settleCcy="USD" type="PRICE" amount="29.83008655"/>

 </cdml-tv:tradeValuationData>

</cdml-tv:trade>

3 Currently not used in TV processing

Element/attribute Description

trade Single traded cleared at the CCP

trade/CCP Short name of the CCP

trade/clearingService See 7.2.2.2

trade/memberId FCM/SCM identifier at the CCP

trade/positionAccountId Identifier of the position account at the CCP

trade/segregationAccount See 7.2.2.2

trade/tradeCashFlowData Group of cash flow elements produced by the trade at the given reportDate

trade/tradeValuationData Other trade valuation data

7.2.3.3 tradeCashFlowData element

<cdml-tv:tradeCashFlowData>

 <cdml-tv:flow settleCcy="USD" type="NPV_ADJUSTED" amount="-220273.13"/>

 <cdml-tv:flow settleCcy="USD" type="NPV_REV" amount="-549622.43"/>

 <cdml-tv:flow settleCcy="USD" type="PAI" amount="-576560.05"/>

 <cdml-tv:flow settleCcy="USD" type="CASH_DELIVERY" amount="0"/>

 <cdml-tv:flow settleCcy="USD" type="SPECIAL_FLOW" settleDate=”2013-10-14” amount="0"/>

</cdml-tv:tradeCashFlowData>

Element/attribute Description

tradeCashFlowData Group of cash flow elements

tradeCashFlowData/flow Single flow type/currency combination

tradeCashFlowData/flow/@settleCcy Settle currency

tradeCashFlowData/flow/@type Flow type

tradeCashFlowData/flow/@amount Settlement amount in the given currency

tradeCashFlowData/flow/@settleDate Optional settle date

7.2.3.4 tradeValuationData element

<cdml-tv:tradeValuationData>

 <cdml-tv:valuation settleCcy="USD" type="NPV_ADJUSTED" amount="-220273.13"/>

 <cdml-tv:valuation settleCcy="USD" type="GAMMA" amount="24669.02"/>

 <cdml-tv:valuation settleCcy="USD" type="THETA" amount="0.207"/>

 <cdml-tv:valuation settleCcy="USD" type="RHO" amount="202005.74"/>

 <cdml-tv:valuation settleCcy="USD" type="PRICE" amount="29.83008655"/>

</cdml-tv:tradeValuationData>

Element/attribute Description

tradeValuationData Group of valuation elements

tradeValuationData/valuation Single valuation type/currency combination

tradeValuationData/valuation/@settleCcy Settle currency

tradeValuationData/valuation/@type Flow type

tradeValuationData/valuation/@amount Settlement amount in the given currency

CDML Developer Guide CDML v3 spec 2014-10-23

8 Generating content: CDMLProducer
There are several ways of generating and storing CDML content in the system. The
only true requisite is to abide by the latest CDML schemas. The Clearing distribution
ships with two main ways of achieving this: loading CDML directly from the
filesystem, and translating it from CCP sources.

C a l y p s o I n t e g r a t e d C l e a r i n g 23/118

CDML Developer Guide CDML v3 spec 2014-10-23

8.1 N E W EOD vs ITD
Introduced in 2.11.0/3.6.0, the CDMLProducer interface allows the implementation to
announce itself as either ITD-capable, EOD-capable, or both. For backwards
compatibility reasons, previous implementations are EOD-capable only. The CDML
framework uses this information when discovering producer implementations. See
8.3.1.3 for more details.

C a l y p s o I n t e g r a t e d C l e a r i n g 24/118

CDML Developer Guide CDML v3 spec 2014-10-23

8.2 Producer types

8.2.1 FileLoaderProducer

This is the simplest CDML producer implementation: it assumes the content to store is
already in CDML format. See 8.3.1.2.

8.2.2 N E W AbstractSourceTranslationProducer

CDML translation is the process by which CCP-specific content is transformed into
the CCP-agnostic representation that is the CDML report. Even when each
translator deals with such CCP-specific content, most of the processing can be done in a
CCP-agnostic fashion. AbstractSourceTranslationProducer , and its immediate child
classes, implement as much as this processing, leaving the final details to the leafs of
the class hierarchy.

See 9 Writing a CDML translator for more details.

C a l y p s o I n t e g r a t e d C l e a r i n g 25/118

CDML Developer Guide CDML v3 spec 2014-10-23

8.2.2.1.1 AbstractTabularTranslationProducer

This producer replaces the deprecated AbstractTranslationProducer4. It provides the
basic functionality to handle row-and-column input files (e.g CSV).

Examples of this producer are the CME and LCH IRD implementations.

8.2.2.1.2 N E W AbstractXMLTranslationProducer

This producer handles the cases in which the input is an arbitrary number of XML files.

The CDML framework provides a default implementation that only requires information
on how to map and group input XML files, to XSL templates. See 9.3 for more details.

4 To be removed in 2.12.0/3.7.0

C a l y p s o I n t e g r a t e d C l e a r i n g 26/118

CDML Developer Guide CDML v3 spec 2014-10-23

8.3 The CDML_TRANSLATE_TO_CDML ScheduledTask
The CDML_TRANSLATE_TO_CDML ScheduledTask is the central driver of CDML loading,
translating, and storing. It is a file based ST, and it can be used for all CCPs, clearing
services, POs and CDML report types simultaneously: there is no need to configure
multiple instances of it.

The ST valuation date determines the CDML reportDate in any downstream
operation: from filtering EOD files, to populating the CDML output.

C a l y p s o I n t e g r a t e d C l e a r i n g 27/118

CDML Developer Guide CDML v3 spec 2014-10-23

8.3.1 Arguments

8.3.1.1 Base Folder

OS folder that will be used

• to load already generated CDML content

• as base folder for the CCP-specific CDML translators

8.3.1.2 CDML Processing

Processing mode, allows two values

• Import Only : assume there are CDML files5 in Base Folder, and load them, using
the FileLoaderProducer.

• Generation plus Import : locate CCP-specific content in the Base Folder
subfolders, and transform it into CDML. See CCP subfolders and CDMLProducer
discovery mechanism for details. Implementations of NEW
AbstractSourceTranslationProducer will be used in this mode.

8.3.1.3 N E W Intraday flag

This attribute is used to populate the CDML report intraday element, as well as to
decide if a given CDML producer should be used at all, given its ability to produce EOD
or ITD content.

• When configured as false (default setting), only EOD-capable translators will be
used.

• When configured as true, only ITD-capable translators will be used.

See 8.3.3 CDMLProducer discovery mechanism for more info.

8.3.2 CCP subfolders

Each subfolder in Base Folder is assumed to be a CCP6 folder

5 Files with .cdml or .xml extension
6 LE with “CCP” role

C a l y p s o I n t e g r a t e d C l e a r i n g 28/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 7: ~/Calypso/clearing/CDML as Base Folder,
with 3 CCP subfolders

In the screenshot above, each of the “CDML” subfolders is named after an existing
CCP LE in the system. Folders not named after a CCP LE are ignored.

8.3.2.1 N E W Arbitrary CCP subfolders

To support the case of multiple POs clearing on a CCP that doesn't produce files with
different names, the task now also reads content from any first-level (non recursive)
CCP subfolder. Although the naming of this subfolders is arbitrary, it is
recommended to do so after the firm id at the CCP.

C a l y p s o I n t e g r a t e d C l e a r i n g 29/118

CDML Developer Guide CDML v3 spec 2014-10-23

8.3.3 CDMLProducer discovery mechanism

This mechanism is still under development, and will probably be
changed in future releases.

The OOTB Clearing distribution doesn't ship any fully configured7 NEW
AbstractSourceTranslationProducer implementation8. Clearing users have to contribute
their own translators to be able to produce CDML from CCP content (see Writing a CDML
translator). Still, the CDML framework needs a way to locate and run these
implementations.

The Clearing.CDML.producerNames domain is used to register such implementations,
using an arbitrary name that identifies the producer.

7 Although the XML implementation is Java code-complete, it requires CCP-specific XSL templates and
configuration

8 This could change in the future, to either include licensed implementations, or sample ones. It doesn't
change the resolution mechanism, though

C a l y p s o I n t e g r a t e d C l e a r i n g 30/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 9: Clearing.CDML.producerNames
domain with two producer implementations registered,
“CME” and “LCH”

The producer name does not need to be the name of a CCP LE, or other object on the
system. Its only purpose is to form the name of an XML classpath resource that
will be used to instantiate the producer itself. The classpath resource name will be
formed like

<producer name>.CDMLProducer.xml

Illustration 10: A sample CME CDML implementation, with the
CME.CDMLProducer.xml resource at root level

The XML resource is interpreted as a Spring application context, with a single
requirement: it must contain a CDMLProducer implementation bean named after
the producer.

C a l y p s o I n t e g r a t e d C l e a r i n g 31/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 11: The CME.CDMLProducer.xml Spring file, with a "CME" bean. The CMEProducer implements
CDMLProducer

Once a producer is discovered and loaded, the scheduled task will perform a last check
on the producer capabilities, matching the Intraday task attribute versus the former's
EOD/ITD capabilities, as stated in 8.3.1.3.

8.3.4 CDML storage

Once CDML is generated, it is stored for later usage, with a CDMLBackend
implementation.

Illustration 12: The CDMLBackend interface

The current implementation stores all CDML in DB, in the CDML_INSTANCE table.

C a l y p s o I n t e g r a t e d C l e a r i n g 32/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 13: CDML_INSTANCE table

The report type, date and version combination is unique: every time a CDML
report is saved

• If there is no previous row for the report type and date combination, one in
inserted, and version is set to 1.

• If there's a previous version, the version is incremented.

When using CDML for downstream processing, only the latest version of the given
report type and date should be considered. See 10 Processing CDML for more
details.

8.3.5 ST execution summary

So, what happens when the ST is run?

• CDML content is produced

◦ Either is loaded from Base Folder.

◦ ...or produced by CDML translators from CCP folders and subfolders.

• CDML content is merged

◦ As seen in CDML storage, only one report type per date is allowed.

◦ But each CDMLProducer implementation (see Generating content:

C a l y p s o I n t e g r a t e d C l e a r i n g 33/118

Illustration 14: CDMLViewer showing 3 tradeValuationReport instances for the same day

CDML Developer Guide CDML v3 spec 2014-10-23

CDMLProducer) can generate an arbitrary number of CDML report instances.

◦ Merging ensures that only one CDML instance of each type remains at
the end.

• The framework sets the current model version ond generation datetime
automatically.

• CDML content is stored.

C a l y p s o I n t e g r a t e d C l e a r i n g 34/118

CDML Developer Guide CDML v3 spec 2014-10-23

9 Writing a CDML translator
As seen in Generating content: CDMLProducer, the goal of the CDML translator author is
to create an AbstractSourceTranslationProducer implementation capable of
producing CDML from CCP-specific content.

This chapter will describe various use cases, covering different strategies.

Chapter 9.2 focuses on tabular translators. Both presented cases can be summarized
in

• Create the translation instructions properties (see 9.2.1.1)

• Creating the source file organizer (see 9.1)

• Creating the translation processors, one per output type (see 9.2.1.4)

• Create the actual producer implementation (see 8.2.2)

• Creating the Spring resource file (see 8.3.3 and 9.2.1.6)

This design is still under development. Changes to it can occur to
cover new cases, or to simplify existing ones.

The CME use case (9.2.1) contains, not only the CME translation
specifics, but also a description of the common classes used by all
tabular translators.

It is highly recommended not to skip it, regardless the interest in the
CME case.

Chapter 9.3 introduces XML based translators. These are simpler, in terms of
number classes involved, and can be implemented with as little as

• The Spring resource file
• A set of XSL templates (one template per desired CDML report type)

C a l y p s o I n t e g r a t e d C l e a r i n g 35/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.1 N E W Source and SourceFileOrganizer

C a l y p s o I n t e g r a t e d C l e a r i n g 36/118

CDML Developer Guide CDML v3 spec 2014-10-23

A Source is a lightweight abstraction of the actual contents of a single CCP report.
Main implementations today, FileSource and BaseFileSource, are file-based, meaning
that they provide access to a filesystem resource9.

A SourceFileOrganizer classifies these sources by purpose (trade valuation, margin)
and clearing member. As seen in Illustration 4, all AbstractTranslationProducer
implementations are configured with a SourceFileOrganizer implementation.

9 There is a ClasspathSource implementation used in unit testing

C a l y p s o I n t e g r a t e d C l e a r i n g 37/118

CDML Developer Guide CDML v3 spec 2014-10-23

This classification (organization) of input sources into groups by purpose and
member is shared by XML-to-XML and table-based translators.

9.2 Tabular translators

9.2.1 Use case: CME IRD translator

With the CME IRD translator, the goal is to produce the initialMarginReport out of
the IRSMR3 EOD file, and the tradeValuationReport out of the IRSTR EOD file.

Illustration 17: CME translation flow summary: each of CME's EOD IRD files results in a different CDML report
type

9.2.1.1 Translation instructions

The translation instructions are groups of properties, organized by id, in a properties
file, that govern

• how many different file sources we're going to handle, and how we'll
identify them, beyond the plain file name.

• which input report columns we'll parse.

• which column we'll use for indexing, if applicable.

The id is used, among other things, to reference them during the actual translation.
Three type of keys are recognized

C a l y p s o I n t e g r a t e d C l e a r i n g 38/118

CME

IRSTR

IRSMR3

CMEProducer

CDML
storage

tradeValuationReport

initialMarginReport

CMETradeValuationTranslationProcessor

CMEInitialMarginTranslationProcessor

CDML Developer Guide CDML v3 spec 2014-10-23

Key
Optional?

(default value) Description

indexColumnName No Will used as index when grouping rows. See 9.2.1.3.1
SourceParser.

indexColumnOptional Yes (false) Instructs the framework not to fail in case the column in
indexColumnName is not found in the input report.
See 9.2.1.3.1 SourceParser.

columns No Comma-separated list of input columns to pull from the
input report. The columns not listed will be ignored.10

The actual property in the file looks like

<instructions id>.<key>=<property value>

For instance

As seen in Illustration 18, the CME translation instructions declare two ids

• IRSTR : in this case the index column is Cleared Trade ID, although it's
optional, because the IRSTR parsing doesn't need to group rows. See
StreamingSourceParser for more info.

• IRSMR3 : the A/C ID column is mandatory, and will be used for row grouping.

10 In some cases, incoming CCP files can have more than a hundred columns, most of them of little use.
Although there is no apparent upper limit to the number of columns to pull from them, it is
recommended to include only those which will be actually used during translation.

C a l y p s o I n t e g r a t e d C l e a r i n g 39/118

Illustration 18: CME translation instructions (content truncated)

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.1.2 Source and source file organizer

Illustration 19: The CMESourceFileOrganizer, showing the file token constant detail in
CMETranslationConstants

Illustration 19 shows the CME implementation

• The raw file names are tokenized, using a separator
(FILE_NAME_TOKEN_SEPARATOR).

• CME IRD EOD report file names include member and date information (e.g.
IRSMR3_4Q0_20130118.nr.csv).

• The file type or purpose (TR or margin) and member mnemonic present in the file
name are used to classify the file, invoking
AbstractSourceFileOrganizer.addSource().

• Other files are ignored. The default behavior is to log an exception, and keep

C a l y p s o I n t e g r a t e d C l e a r i n g 40/118

CDML Developer Guide CDML v3 spec 2014-10-23

processing. Ideally, only files that can contribute to the final content should reach
this stage: see 9.2.1.5.3 Providing parser implementations for more info.

9.2.1.3 Parser implementations

Before jumping into the translation process, it is important to understand how the
parsing of the CCP EOD files works, and the current Parser implementations.

Parsers are stateful objects that need to be configured with the source to parse, a
row acceptor (see 9.2.1.5.2 Row acceptor), and the translation instructions for the
given source. As such, they cannot be reused for multiple sources, even if those
are of the same kind.

The main Parser method is parseSource(): this method must be called before the
source can be used, and causes it to be fully scanned, or, at least, prepared for it,
depending on the implementation.

See 9.2.1.5.3 Providing parser implementations for more info.

9.2.1.3.1 SourceParser

This is the default implementation. Upon parseSource() invocation, the whole input
source is read, and its contents translated into rows and columns. This implementation
is suitable for small to mid-size files, and/or files that need to group rows by
index column (see 9.2.1.1 Translation instructions).

C a l y p s o I n t e g r a t e d C l e a r i n g 41/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 21: Edited CME IRSMR3 file (reordered columns), with three account ids (AAAA, BBBB, CCC). CME
provides margin breakout per currency, so it makes sense to group rows by A/C ID, as seen in CME's IRSMR3
translation instructions.

Once parsed, information can be retrieved using the following methods

Method name Input Output Description

getIndexValue
s

N/A Set of index values Get all different index column values. In the example
from Illustration 21, that would be [AAAA, BBBB,
CCC]

queryValuesBy
Row

Index value List of rows that
contain the index

value

Retrieve all rows that contain the passed index value,
as a map of column name/raw column value.
Further cell data type conversion is deferred:
processors need to interpret (read: further
parse/convert) the data, if applicable.

9.2.1.3.2 StreamingSourceParser

This is an on-demand parser, which defers the actual reading of the input source until
new rows are needed, thus saving memory. This implementation is recommended for
large input files, and/or files that don't require row grouping.

Illustration 22: Truncated CME IRSTR file. The information unit is the cleared trade, and each row represents a
different one, so it doesn't make sense to do any grouping: in terms of trade information, rows are
unrelated to each other.

Main methods are

Method name Input Output Description

readNextLine N/A Next row from the
source file, or null,
of there's no more

content to read

Obtain the next row from the input file, as a map of
column name/raw column value. Further cell data
type conversion is deferred: processors need to
interpret (read: further parse/convert) the data, if
applicable.

C a l y p s o I n t e g r a t e d C l e a r i n g 42/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.1.4 Translation processors

CDML producers normally delegate the heavy lifting of the translation process to the
ReportTranslationProcessor implementations. As seen in Illustration 23, two partial
implementations are included in the clearing distribution. CDML translator writers need
to provide the final piece, populateReportContent(), which performs the actual
translation. The process can be summarized as

• Obtaining the appropriate parser or parsers for the type of report to be
generated (initial margin or trade valuation).

• Iterate over index values, or rows, and produce an <initialMarginData> or
<trade> element, depending on the translator, for each of them.

• Populate the new element with information in the row/s provided by the parser.

C a l y p s o I n t e g r a t e d C l e a r i n g 43/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.1.4.1 CMEInitialMarginTranslationProcessor

The CME IM translation processor uses the default SourceParser to retrieve all rows
per account id, as seen in Illustration 21.

Every index value represents a margin account, so a new <initialMarginData>
element is created

C a l y p s o I n t e g r a t e d C l e a r i n g 44/118

Illustration 25: Main CME IM translator loop, showing how the parser is extracted from the context, and the
iteration over the index values

CDML Developer Guide CDML v3 spec 2014-10-23

In the case of CME, currency breakdown is provided, and so such detail is added to the
CDML output

Illustration 28: Currency breakdown loop, within a single IM element. The list of rows was provided by the
parser. Note how the aggregated amounts are updated after the currency iteration

C a l y p s o I n t e g r a t e d C l e a r i n g 45/118

Illustration 27: The group builder is attached to the current IM element, and the single measure builder
to the group one. Note the 0.0 value: the actual value will be aggregated after

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.1.4.2 CMETradeValuationTranslationProcessor

CME TV processor uses the StreamingSourceParser instead of the default one: there's
no benefit in grouping rows, as the output information unit (the <trade> element)
corresponds to the input one (the cleared trade row). Also, the TR is a report that can
grow substantially, and it can be dangerous, in terms of resources, to keep it all in
memory.

As with the IM one, the first step is to obtain the parser, and then iterate over the input.
In this case, though, the exit condition (no more rows present) has to be checked

Illustration 30: CME TV translator obtaining the streaming parser, and detail on the row parsing loop setup

As stated before, every row represents a <trade> element

C a l y p s o I n t e g r a t e d C l e a r i n g 46/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 31: Creating the <trade> element from the just read row. Note the date processing: the
parser provides raw String data, the translator adds the last parsing step by interpreting the column as a
date

Flows and valuations can be added manually, or with the helper builders

Illustration 32: FlowGroupBuilder and flow adding detail

N E W AggregatingFlowGroupBuilder

Every time the FlowGroupBuilder.addFlow() method is invoked, a new <flow>
element will be added to the output. Sometimes this is not the desired behavior: in
some cases, the expected output is to aggregate a column across several rows, into a
single output flow. For those cases, AggregatingFlowGroupBuilder was created.

AggregatingFlowGroupBuilder.addFlow() method checks if there is already an
existing flow, and adds up the value, instead of blindly creating a new one.

C a l y p s o I n t e g r a t e d C l e a r i n g 47/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.1.5 Orchestrating the process: the CDMLProducer
implementation

Illustration 33: CMEProducer as an
AbstractTranslationProducer implementation. See Illustration 3
for an extended hierarchy

As the object being instantiated by the Spring context, the CDMLProducer
implementation integrates all previously mentioned concepts, driving the
translation process.

Its main responsibilities are the ones linked to the specifics of a given CCP, like

• Providing the source files filtering expression

• Creating the source parsers, when other than the default one must be used

• Verifying the input folder has enough source files to generate the output
CDML report/s

9.2.1.5.1 Filtering sources

The generateFilter() method is one of the mandatory methods to implement, as an
AbstractFolderBasedProducer child class. The latter will use the resulting
FileFilter to ignore any file non related to CDML generation, or to the
business date being processed.

C a l y p s o I n t e g r a t e d C l e a r i n g 48/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 34: CMEProducer generateFilter() implementation. Note how the report (business)
date is added to the resulting filter

9.2.1.5.2 Row acceptor

In most producer implementations, the row acceptor will be configured in the Spring
context (see 9.2.1.6), if there is need for any at all. If not configured, the default
implementation will be used.

Illustration 35:
DefaultRowAcceptor

DefaultRowAcceptor will accept all rows, as long as they're not empty.

9.2.1.5.3 Providing parser implementations

Producer implementations can also override the default parser creation

C a l y p s o I n t e g r a t e d C l e a r i n g 49/118

CDML Developer Guide CDML v3 spec 2014-10-23

in case the streaming parsed is preferred/needed.

Illustration 37: CMEProducer createParser() override: TR processing requires a
StreamingSourceParser. See Illustration 30

9.2.1.5.4 Source file presence check

Not an actual requisite, these checks improve the user's understanding of the
missing sources problem.

C a l y p s o I n t e g r a t e d C l e a r i n g 50/118

Illustration 36: Default createParser() implementation

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 38: CME hasTradeValuation and hasInitialMarginSources checks

In case either of the methods returns false, the TV or IM CDML generation is skipped.

9.2.1.6 The Spring context

As stated in 8.3.3, all CDML translator implementations must provide a Spring
file named after the producer, containing a CDMLProducer bean, also named after
the producer.

Illustration 39: CME.CDMLProducer.xml redux. Note the bean, and the file, are named after the
producer, “CME”. This name is arbitrary.

C a l y p s o I n t e g r a t e d C l e a r i n g 51/118

CDML Developer Guide CDML v3 spec 2014-10-23

A breakdown of this configuration follows

C a l y p s o I n t e g r a t e d C l e a r i n g 52/118

<bean name="CME" class="com.calypso.tk.cdml.producer.translation.CMEProducer">

Bean name matching the file name prefix. Using the com.calypso.tk.cdml.producer.translation package is not
required, although it's recommended to follow the same code organization convention.

<property name="sourceFileOrganizer">

 <bean class="com.calypso.tk.cdml.producer.translation.source.CMESourceFileOrganizer">

 <property name="stripQuotes" value="true" />

 <property name="contentDelimiter" value="," />

 </bean>

</property>

CME SourceFileOrganizer implementation. Note stripQuotes is set to true, as CME escapes their files with them. Also,
CME publishes CSVs (Comma Separated Values), so comma is the separator.

<property name="translationInstructions">

 <bean class="com.calypso.tk.cdml.producer.translation.instructions.factory.TranslationInstructionsLoaderBean">

 <property name="resourcePath" value="instructions/CMEProducer.translationInstructions.properties" />

 <property name="instructionIds">

 <set>

 <value>IRSMR3</value>

 <value>IRSTR</value>

 </set>

 </property>

 </bean>

</property>

Translation instructions map, loaded by a TranslationInstructionsLoaderBean: the values in instructionIds are both
the instruction ids, and the keys in the resulting map. The classpath location and naming of the properties file,
instructions/CMEProducer.translationInstructions.properties, is arbitrary, although it is recommended to follow
the same approach

instructions/<producer class name>.translationInstructions.properties

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.2 Use case: LCH IRD translator

As in the CME IRD case, LCH IRD translator needs to produce both the
initialMarginReport and tradeValuationReport. But in the LCH case the translation
is more complex, mainly because the information is scattered across a variety of files.

9.2.2.1 Translation instructions

The translation instructions for LCH IRD include both indexed and non-indexed files,
depending on their purpose and structure. Translation ids are chosen to match LCH file
naming, dropping date, description and suffix. This is similar to the CME approach, and
it simplifies the handling to be done by the source organizer, producer and translation
processors.

C a l y p s o I n t e g r a t e d C l e a r i n g 54/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 41: LCH translation instructions (content truncated). Note some of the reports are indexed (e.g.
REP00086c), while others are to be parsed in a streaming, non-indexed fashion (e.g. REP00091xce). Also,
note the different choice in index columns for some of the reports. E.g. for REP00086c
ClientAccountId is used, while for REP00086 is Account.

9.2.2.2 Source and source file organizer

LCH source file organizing needs to deal with the fact that there's no member
information included in the file name.

C a l y p s o I n t e g r a t e d C l e a r i n g 55/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 42: General view of the LCHSourceFileOrganizer, with a partial LCHTranslationConstants
view. LCHTranslationConstants groups all the hardcoded constant values shared by the classes that
compose the LCH translator

A more detailed breakdown of the organizer code follows

private static final String MEMBER_TOKEN = "singleMember";

As stated before, there's no member information available in the filename: an arbitrary
one is chosen.

Since 2.11/3.6, it is possible to place files for different members in separate CCP sub-
folders (see 8.3.2.1 for more info).

C a l y p s o I n t e g r a t e d C l e a r i n g 56/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.2.3 Translation processors

9.2.2.3.1 LCHInitialMarginTranslationProcessor

Illustration 43: LCHInitialMarginTranslatorProcessor hierarchy detail

LCH IM translation processor requires the default SourceParser for the three source
files to parse, identified by the tokens

• REP00086c

• REP00086

• REP00050g

The populateReportContent() implementation is a simple delegation

C a l y p s o I n t e g r a t e d C l e a r i n g 57/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 44: LCHInitialMarginTranslationProcessor populateReportContent()
implementation. Note how the existence of parsers is not guaranteed. If parser is not in the context, it
means that its source wasn't found. Even with one of the sources missing, content can still be
generated with the other one: translators should always try to generate as much content as
possible with the existing sources

The actual implementation occurs in the following method

Illustration 45: Actual populateReportContent() implementation, showing the loop detail, and the
extraction of the single row for the loop index

As stated in the code comment, because of the structure of LCH REP00086/c margin
reports, it is not expected to encounter more than one row per margin account: we can
assume only the account aggregation is left, and proceed as such.

C a l y p s o I n t e g r a t e d C l e a r i n g 58/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 46: Bulk of the initialMarginDataType creation, and addition of two measures to the
measures group

REP00086/c doesn't provide a true currency breakdown. But in the case of LCH LLC, the
native margins in GBP can be calculated, and included in CDML, with a dummy, single
currency breakdown

Illustration 47: Calculating original margins in GBP, using the conversion rate from the report

The result would look like this

C a l y p s o I n t e g r a t e d C l e a r i n g 59/118

<cdml-im:measures>

 <cdml-im:measure requirementCcy="USD" type="MAINTENANCE_REQUIREMENT" amount="-1366413552.33">

 <cdml-im:measureBreakdown nativeCcy="GBP" amount="-819094564.3987532" conversionFX="1.6682"/>

 </cdml-im:measure>

 <cdml-im:measure requirementCcy="USD" type="INITIAL_MARGIN" amount="-1192572443.92">

 <cdml-im:measureBreakdown nativeCcy="GBP" amount="-714885771.4422731" conversionFX="1.6682"/>

 </cdml-im:measure>

 <cdml-im:measure requirementCcy="USD" type="LIQUIDITY_MARGIN" amount="-173841108.42">

 <cdml-im:measureBreakdown nativeCcy="GBP" amount="-104208792.96247452" conversionFX="1.6682"/>

 </cdml-im:measure>

 <cdml-im:measure requirementCcy="USD" type="ADDITIONAL_MARGIN" amount="0">

 <cdml-im:measureBreakdown nativeCcy="GBP" amount="0" conversionFX="1.6682"/>

 </cdml-im:measure>

</cdml-im:measures>

See 10.3.1 Requirement vs. native margins for more info.

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.2.3.2 Populating the report from different sources: the OSA/ISA
accounts case

Sometimes it is convenient to report upon margin at two different breakdown levels,
provided the CCP supports it: margin account, and position account level. With the
same translator output, it's just a configuration matter to produce downstream content
at these two levels.

As seen in 7.2.2.4, CDML is capable of encoding both these levels by using the
initialMarginPositionAccountData element. This is the approach taken with LCH
REP00086c and REP00050g: the former will report at margin account level, the latter
will offer a position account breakdown.

C a l y p s o I n t e g r a t e d C l e a r i n g 61/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.2.3.3 LCHTradeValuationTranslationProcessor

LCH TV generation is a complex case, because of its exceptions

• Sourced from several reports, including separate reports for FRAs and IRS

• Account ids coming from LCH need to be translated using the system
configuration to produce usable CDML11

That said, most of the parsing is driven by a single report12, REP00091xce/xe,
which contains trade level NPV information. The processor will parse such report in a
streaming fashion, and will enrich the information using the other aforementioned
reports.

It is worth detailing the main steps here

11 As a rule of thumb, CDML should be generated only with information coming from the CCP files.
Sometimes, though, that information needs to be translated or enriched. These cases should be the
exceptions, not the norm

12 Or report pair, House and Client

C a l y p s o I n t e g r a t e d C l e a r i n g 62/118

private void populateReportContent(TradeValuationReportType tradeValuationReport,

 Parser tradeLevelNPVParser,

 boolean isHouseParser) {

 if (!(tradeLevelNPVParser instanceof StreamingSourceParser)) {

 throw new UnsupportedOperationException(String.format(PARSER_NOT_SUPPORTED_ERROR_MSG,

 tradeLevelNPVParser));

 }

 StreamingSourceParser parser = (StreamingSourceParser) tradeLevelNPVParser;

First check is to make sure the appropriate parser has been created (see 9.2.2.4.3 Parser implementations), which in this
case is a StreamingSourceParser13. Main loop then begins

Map<String, String> row = null;

try {

 while ((row = parser.readNextLine()) != null) {

 TradeType trade = getObjectFactory().createTradeType();

 // Don't add it yet, wait to see if we can locate the position account id

 trade.setCCP(getContext().getCCPCode());

 trade.setClearedTradeId(row.get(MATCHED_TRADE_REF_COLUMN));

 trade.setClearingService(IRD_CLEARING_SERVICE);

 trade.setMemberId(row.get(MEMBER_MNEMONIC_COLUMN));

 trade.setSegregationAccount(row.get(ACCOUNT_COLUMN));

 String positionAccountId = locatePositionAccountId(trade, row.get(isHouseParser ? SD_MNEMONIC_COLUMN : CLIENT_SHORT_NAME_COLUMN));

 if (positionAccountId != null) {

 trade.setPositionAccountId(positionAccountId);

 // Now add

 tradeValuationReport.getTrades().add(trade);

Note how the TradeType object is created, but not added to the output collection. Then it's used as a DTO object for
locatePositionAccountId(), which will find the actual P O S I T I O N A C C O U N T I D 14. Note also the different choice of column for
House and Client reports.

Only if such account is found in the system the trade is added the the output collection.

13 For the same reasons than in the CME case: trade level reports can be massive, and there's no need to group rows using an index
14 This is accomplished using the clearing accounts configured with an LCHAccountName attribute, and matching them with it

FlowGroupBuilder flowGroupBuilder = createFlowGroupBuilder();

trade.setTradeCashFlowData(flowGroupBuilder.getElement());

ValuationGroupBuilder valuationGroupBuilder = createValuationGroupBuilder();

trade.setTradeValuationData(valuationGroupBuilder.getElement());

// NPV

double npv = parseDouble(row.get(CURRENT_NPV_COLUMN));

flowGroupBuilder.addFlow(NPV_FLOW, npv, settleCcy);

valuationGroupBuilder.addValuation(NPV_FLOW, npv, settleCcy);

valuationGroupBuilder.addValuation(RAW_NPV_FLOW, npv, settleCcy);

// Previous NPV

double previousNPV = parseDouble(row.get(NPV_PREV_COB_COLUMN));

flowGroupBuilder.addFlow(NPV_REV_FLOW, -previousNPV, settleCcy);

valuationGroupBuilder.addValuation(NPV_ADJUSTED_PREV_FLOW, previousNPV, settleCcy);

valuationGroupBuilder.addValuation(RAW_NPV_PREV_FLOW, previousNPV, settleCcy);

// Variation

double variation = npv - previousNPV;

roundAmount(flowGroupBuilder.addFlow(VARIATION_FLOW, variation, settleCcy));

valuationGroupBuilder.addValuation(VARIATION_FLOW, variation, settleCcy);

// PAI

double pai = parseDouble(row.get(TRADE_LEVEL_PAI_COLUMN));

flowGroupBuilder.addFlow(PAI_FLOW, pai, settleCcy);

valuationGroupBuilder.addValuation(PAI_FLOW, pai, settleCcy);

// Upfront Fee

double upfrontFee = parseDouble(row.get(CONSIDERATION_COLUMN));

flowGroupBuilder.addFlow(UPFRONT_FEE_FLOW, upfrontFee, settleCcy);

valuationGroupBuilder.addValuation(UPFRONT_PAYMENT_FLOW, upfrontFee, settleCcy);

As stated before, most of the information is taken from REP00091xce/xe. Show above is the sourcing of NPV, Previous
NPV, Variation15, PAI and Upfront Fees flows. Same amount is reused for the corresponding valuation elements.

15 Synthetic flow: not directly provided by LCH, although the computation is trivial, given the presence of NPV and Previous NPV

// Coupon

Amount coupon = getCoupon(trade.getClearedTradeId(), isHouseParser);

if (coupon != null) {

 flowGroupBuilder.addFlow(COUPON_FLOW, coupon.amount, coupon.currency);

}

Coupon is not an always present flow, so it's existence is validated. See 9.2.2.3.4 Parsing coupons for more info on
obtaining coupons. The same happens with FRA payments

// FRA payment

Amount fraPayment = getFRAPayment(tradeValuationReport, trade.getClearedTradeId(), isHouseParser);

if (fraPayment != null) {

 flowGroupBuilder.addFlow(FRA_PAYMENT_FLOW, fraPayment.amount, fraPayment.currency);

}

Finally, the trade element is completed with the remaining valuations

// Accrued payleg

valuationGroupBuilder.addValuation(ACCRUAL_PAYLEG_FLOW, parseDouble(row.get(ACCRUED_PAYLEG_COUPON_COLUMN)), settleCcy);

// Accrued recleg

valuationGroupBuilder.addValuation(ACCRUAL_RECLEG_FLOW, parseDouble(row.get(ACCRUED_RECLEG_COUPON_COLUMN)), settleCcy);

// DV01/PV01

Amount pv01 = getPV01(trade.getClearedTradeId(), isHouseParser);

if (pv01 != null) {

 // Spec doesn't define what happens if missing

 valuationGroupBuilder.addValuation(DV01_FLOW, pv01.amount, pv01.currency);

}

9.2.2.3.4 Parsing coupons

Coupon information is sourced from a separate report, REP00002/c. These reports detail the coupon flow information for
every registered IRS trade. That means a sizable amount of report rows: a streaming approach is desirable in this
case, with minimum column pulling.

Illustration 50: REP00002c translation instructions detail. Note only the minimum amount of
columns are pulled from the report

When a coupon amount for a given trade id is requested, lazy parsing of the House or Client reports occurs

private Amount getCoupon(String lchTradeRefId, boolean isHouseParser) throws IOException {

 Map<String, Amount> cachedCoupons = null;

 // The coupon maps set to null indicate parsing hasn't yet happened, or ar least tried

 if (isHouseParser) {

 if (readHouseCoupons == null) {

 readHouseCoupons = new HashMap<String, Amount>();

 parseCoupons(readHouseCoupons, getContext().getParser(HOUSE_IRS_COUPON_FLOW_FILE_TOKEN));

 }

 cachedCoupons = readHouseCoupons;

 } else {

 if (readClientCoupons == null) {

 readClientCoupons = new HashMap<String, Amount>();

 parseCoupons(readClientCoupons, getContext().getParser(CLIENT_IRS_COUPON_FLOW_FILE_TOKEN));

 }

 cachedCoupons = readClientCoupons;

 }

 return cachedCoupons.get(lchTradeRefId);

}

Raw parsed reports will be transformed to maps of {trade ids – Amount instances}. From there, obtaining the coupon is
trivial. Amount is a simple intermediate structure to ease mapping

private class Amount {

 String currency;

 double amount;

}

The actual parsing and map creation occurs in parseAmounts(), which is also used for PV01/DV01

private void parseAmounts(Map<String, Amount> cachedAmounts,

 Parser amountParser,

 String amountColumn,

 Filter<Map<String, String>> rowFilter) throws IOException {

 Assert.notNull(cachedAmounts);

 Assert.notNull(rowFilter);

 Assert.hasText(amountColumn);

 if (amountParser != null) {

 if (!(amountParser instanceof StreamingSourceParser)) {

 throw new UnsupportedOperationException(String.format(PARSER_NOT_SUPPORTED_ERROR_MSG,

 amountParser));

 }

 StreamingSourceParser parser = (StreamingSourceParser) amountParser;

 Map<String, String> row = null;

 while ((row = parser.readNextLine()) != null) {

 if (rowFilter.accept(row)) {

 String tradeRef = row.get(MATCHED_TRADE_REF_COLUMN);

 Amount couponAmount = cachedAmounts.get(tradeRef);

 if (couponAmount == null) {

 couponAmount = new Amount();

 couponAmount.amount = 0.0d;

 couponAmount.currency = row.get(CURRENCY_COLUMN);

 cachedAmounts.put(tradeRef, couponAmount);

 }

 couponAmount.amount += parseDouble(row.get(amountColumn));

 }

 }

 }

}

Coupons are aggregated per trade, provided the row matches the right criteria. For coupons, that is

private void parseCoupons(Map<String, Amount> cachedCoupons, Parser couponParser) throws IOException {

 parseAmounts(cachedCoupons, couponParser, AMOUNT_COLUMN, new Filter<Map<String, String>>() {

 @Override

 public boolean accept(Map<String, String> row) {

 return PAYMENT_INSTRUCTED_COLUMN_VALUE.equals(row.get(STATE_COLUMN));

 }

 });

}

Which means that only coupon legs16 being scheduled for payment as of the report date will be aggregated.

For DV01/PV01, which is published everyday, no filtering is needed

private void parsePV01(Map<String, Amount> cachedPV01, Parser pv01Parser) throws IOException {

 parseAmounts(cachedPV01, pv01Parser, TRADE_PV01_COLUMN, new Filter<Map<String, String>>() {

 @Override

 public boolean accept(Map<String, String> row) {

 return true;

 }

 });

}

16 Pay and receive legs, normally

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.2.4 LCHProducer

Illustration 51: LCHProducer hierarchy detail. See Illustration 3 for an
extended hierarchy

9.2.2.4.1 Filtering sources

Illustration 52: LCH source filter expression. Date is prepended, and a simple report token list follows

C a l y p s o I n t e g r a t e d C l e a r i n g 69/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.2.4.2 Row acceptor

Illustration 53:
IgnoreTokensRowAcceptor will drop
empty rows, and those which contain one of
the configured tokens

LCH reports can contain header and footer information that need to be ignored when
generating CDML content.

Illustration 54: REP00105c report, highlighting the creation datetime header and row count footer

IgnoreTokensRowAcceptor is configured by the Spring context, and set into the
producer.

C a l y p s o I n t e g r a t e d C l e a r i n g 70/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 55: Detail of the acceptor Spring configuration for LCH

9.2.2.4.3 Parser implementations

createParser() overrides the default creation when dealing with trade level
information reports.

Illustration 56: Parser override for LCH: trade level and coupon reports are better handled with
streaming parsers

C a l y p s o I n t e g r a t e d C l e a r i n g 71/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.2.2.4.4 Spring context

Illustration 57: LCHProducer bean detail. Note the rowAcceptor setup, as well as the tab
separator (contentDelimiter)

C a l y p s o I n t e g r a t e d C l e a r i n g 72/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.3 N E W XML translators

As of now, only one XML translator exists. The following is subject to
change if new, unsupported XML-to-XML cases are encountered.

With the lessons learned from previous translators, the XML-to-XML support was built to
reduce, even further, the complexity of the CCP-specific details of a given translator.
The only current example, EUREX, doesn't require any CCP-specific
Java code. As we'll see, Spring configuration and XSLT files are all that is required.

C a l y p s o I n t e g r a t e d C l e a r i n g 73/118

CDML Developer Guide CDML v3 spec 2014-10-23

C a l y p s o I n t e g r a t e d C l e a r i n g 74/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.3.1 From input files, to javax.xml.transform.Source
instances

The XML-to-XML translator implementation makes use of the Java API for XML
Processing (JAXP). The idea is to provide a pair of resources for each CDML report
that is to be produced

• The content javax.xml.transform.Source17 : this is the CCP content to be
transformer

• The transformation stylesheet javax.xml.transform.Source : these are the
instructions by which the CCP content is translated to CDML

This idea is captured in the new SourceProvider interface

As seen in 9.1, every translation producer is configured with a SourceFileOrganizer
that performs an initial classification of the input files. Initially, the idea was to separate
files per member, and then per purpose (margin, valuation). The problem comes when
more than one input file is required to populate a single output CDML file. This
case (e.g. EUREX, LCH, COMDER) is more common than the “1 input CCP file to 1
output CDML report” one (e.g. CME). The result is that the translator implementations
need to host the extra code to group input files by purpose to produce a single output
file.

XML translators take that concept further with a second classification, whose goal is
to produce a collection of SourceProvider implementations, and save the producer
implementations from reimplementing it.

17 Not to be mistaken with the CDML organizer Source

C a l y p s o I n t e g r a t e d C l e a r i n g 75/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.3.2 DefaultXMLTranslationProducer and
ResourceMergingSourceProvider

DefaultXMLTranslationProducer is the only current
AbstractXMLTranslationProducer implementation. It uses a map of stylesheets to
group the input files into the expected SourceProvider implementations. See 9.3.3.1
for an example of this map.

The grouped input files, along with the selected stylesheet, are configured in a
ResourceMergingSourceProvider. This provider concatenates all input XML files
into a single merged one18, which will be the content Source used in the XML-to-XML
transformation.

The merged approach was chosen over the multiple, separate content Sources, for the
following reasons

• JAXP API doesn't allow multiple input content Sources: only one can be
passed on each transformation

• The document() XPath function needs to be used to reference the remaining
content sources. This function is implemented differently in different XSLT
processors, and requires absolute paths to the content sources. These paths
are not known on compile time

• Having to choose one of the input files over the others as the one passed to JAXP
is an arbitrary choice, better to be avoided

9.3.3 Use case: EUREX IRD translator

As stated before, the EUREX translator only requires

• The XSL files for TV and IM

• The Spring configuration file

18 No merging is done if only one input file is provided

C a l y p s o I n t e g r a t e d C l e a r i n g 77/118

CDML Developer Guide CDML v3 spec 2014-10-23

9.3.3.1 Spring file

A commented breakdown of the file follows.

C a l y p s o I n t e g r a t e d C l e a r i n g 78/118

<bean name="EUREX" class="com.calypso.tk.cdml.producer.translation.xml.spring.DefaultXMLTranslationProducer">

Producer name is “EUREX”, and the code is provided by core clearing.

<property name="dateFilterPrefix" value="(84|85)RPT.*" />

dateFilterPrefix and dateFilterSuffix are regular expression fragments used by generateFilter() to narrow
down the set of input files to be considered by later stages. See 9.2.1.5.1 for more info.

<property name="sourceFileOrganizer">

 <bean class="com.calypso.tk.cdml.producer.translation.source.regex.RegexSourceFileOrganizer">

 <property name="matchers">

 <list>

 <bean

 class="com.calypso.tk.cdml.producer.translation.source.regex.FilenameMatcher">

 <!-- The regular expression to tokenize the EUREX report names -->

 <!-- 2 digits for the environment -->

 <!-- Then RPTXYYY -->

 <!-- Then member id, 5 characters -->

 <!-- Then date in compact ISO format -->

 <!-- Then optional time as hhmm for ITD reports -->

 <constructor-arg value="[0-9]{2}+(RPTC[A-Z][\d]{3}+)([\S]{5}+)[\d]{8}+([\d]{4}+){0,1}?\.XML" />

 <!-- Report type capturing group index -->

 <constructor-arg value="1" />

 <!-- Member id capturing group index -->

 <constructor-arg value="2" />

 </bean>

 </list>

 </property>

 </bean>

</property>

Generic regex organizer. The regular expression serves two purposes:

• Further narrow down the set of accepted files, beyond generateFilter()

• Extract the member id and report type from the input file name

This is an alternative to the code shown in 9.2.1.2 and 9.2.2.2. In the configuration above, two capturing groups are
defined, their boundaries delimited by (), which will serve to extract the report type or token (first capturing group) and

member id (second capturing group).

Illustration 62: Sample regex breakdown of an EUREX filename. Only the first and second capturing groups are used, as seen in the bean
configuration. The remaining portions are useful to validate only the expected files are transformed, but such information is not used in dowstream
processing

85RPTCC204MNOHB20130416.XML

[0-9]{2}+(RPTC[A-Z][\d]{3}+)([\S]{5}+)[\d]{8}+([\d]{4}+){0,1}?\.XML

Optional time portion

Environment

85 RPTCC204
File type/token
(1st capturing

group)

MNOHB
Member id

(2nd capturing
group)

20130416
Date

.XML
Suffix

CDML Developer Guide CDML v3 spec 2014-10-23

<property name="stylesheetsToFileTokenMap">

 <map>

 <entry key="classpath:stylesheet/cdml/EUREXTradeValuationReport.xslt">

 <set>

 <value>RPTCC203</value>

 <value>RPTCI280</value>

 <value>RPTCD200</value>

 <value>RPTCB202</value>

 </set>

 </entry>

 <entry key="classpath:stylesheet/cdml/EUREXInitialMarginReport.xslt">

 <set>

 <value>RPTCC204</value>

 </set>

 </entry>

 </map>

</property>

Mapping definition. With the file tokens extracted with the regular expressions, files will
be grouped around a stylesheet, and together will populate the SourceProvider.

Note the keys to the map are the actual Spring classpath resources pointing to the XSLT
files containing the TV and IM instructions, respectively.

9.3.3.2 XSLT instructions

The XSL transformation must produce valid CDML content (as of today, TV or IM).
Any approach is allowed, as long as this condition is met.

Translator writers can make use of the following special import namespaces to bring
templates that will populate the report headers

• urn:cdml:transform:initialMarginReportBase for IM

• urn:cdml:transform:tradeValuationReportBase for TV

For each of those, the following XSL templates must then be implemented, respectively

• initialMarginReportContentTemplate for IM

• tradeValuationReportContentTemplate for TV

A sample IM XSL would begin like this

C a l y p s o I n t e g r a t e d C l e a r i n g 81/118

CDML Developer Guide CDML v3 spec 2014-10-23

As seen in 9.3.2, when multiple files are required to generate a single CDML report,
those are merged into a single one. The stylesheet needs to reference all the input
and output namespaces, so fully qualified XPath expressions can be used.

C a l y p s o I n t e g r a t e d C l e a r i n g 83/118

CDML Developer Guide CDML v3 spec 2014-10-23

10 Processing CDML
This section describes some general concepts of the CDML processing code, and how
it's kicked off by the CLEARING_PROCESS_FROM_CDML ScheduledTask.

This is not intended to be a formal specification of the CDML
processing rules. For such information, visit the shared CDML
Processing Rules and CDML Scheduled Tasks shared Box folders at
https://calypso.box.com/s/khx18p3sfew9ttj4uvdx and
https://calypso.box.com/s/d9r9unlqsvrjklb8g4xk, respectively

10.1 The CLEARING_PROCESS_FROM_CDML
ScheduledTask

The CLEARING_PROCESS_FROM_CDML ScheduledTask is the BO processing task that
replaces the previous object-creating Clearing ones, such as (but not limited to)

• CLEARING_BO_MARGIN

• CLEARING_SETTLEMENT

• CLEARING_MARKS

It takes CDML content previously stored, and updates the system state by creating
Calypso core objects

• Collateral Exposure trades

• ClearingTransfer trades

• PLMarks

Given that CDML is aimed to be a fully descriptive report, and the way it's stored (see
8.3.4 CDML storage), there's is no need to create separate instances of the
scheduled task for different CCPs, POs, or products: all the information is
contained in the same CDML report instance.

The ST valuation date determines the CDML report instance/s to be loaded
from persistence.

C a l y p s o I n t e g r a t e d C l e a r i n g 84/118

https://calypso.box.com/s/d9r9unlqsvrjklb8g4xk
https://calypso.box.com/s/khx18p3sfew9ttj4uvdx

CDML Developer Guide CDML v3 spec 2014-10-23

10.1.1 Arguments

Illustration 65: Sample ST configuration, highlighting the two main arguments, apart from the
valuation datetime: CDML Report Type and Pricing Environment

10.1.1.1 CDML Report Type

Users can choose to process all CDML content for the given day, or focus only in one
report type. As of now, the available reports are

• initialMarginReport

• tradeValuationReport

See 7 CDML types for more info.

10.1.1.2 Pricing Environment

Given that the pricing environment is a Calypso concept, and it's not available directly
in CDML, the ST requires this argument to be configured: in some cases, like the
creation of product trade PLMarks, there is no way to obtain it from any related
object.

In other cases in which a Calypso core object proves to be a better source, such as

C a l y p s o I n t e g r a t e d C l e a r i n g 85/118

CDML Developer Guide CDML v3 spec 2014-10-23

Collateral Exposures PLMarks19, it will be ignored.

10.1.2 Execution summary

The scheduled task responsibilities are minimal

• Obtain the CDML report instance/s for the given valuation date

• Instantiate and configure the appropiate CDMLConsumer for each report loaded

• Invoke the consumer's onReport()

19 MCCs store both ITD and EOD pricing environment references

C a l y p s o I n t e g r a t e d C l e a r i n g 86/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 66: CDMLConsumer hierarchy, showing only public methods

There are no customization points so far in the CDMLConsumer hierarchy, mainly
because there's is no need to: at this point, all content is CDML, and encoded
equally, regardless the CCP, product/service, member or account.

C a l y p s o I n t e g r a t e d C l e a r i n g 87/118

CDML Developer Guide CDML v3 spec 2014-10-23

10.2 Processing the tradeValuationReport
The trade valuation CDML processing can be summarized with the following steps

• Group <trade> elements by

◦ CCP

◦ Clearing Service20

◦ Member Id (PO at the given CCP)

◦ Position Account Id

◦ Currency. See 10.2.1 Trades with flows in multiple currencies

• For every of these groups

◦ Create a ClearingTransfer trade, in memory, with the aforementioned
details

◦ Aggregate the <trade> elements flows, if matching the group currency, and
attach them to the ClearingTransfer as fees

▪ Fee date is calculated following clearing standard practices21, except
for the cases in which a specific settleDate is present in the input CDML.
See 10.2.2 Flow/fee settle date override

◦ Transfer settlement amount is computing by adding all fee values22

◦ A lookup is performed, to verify if an existing transfer already exists

▪ If the transfer already exists, and the economic details have not
changed23, nothing happens: the new transfer is discarded

▪ If the transfer already exists, and the economic details have changed, it is
canceled, and the new one saved, containing the latest information

▪ If the transfer does not exist, the new one is saved

◦ ClearingTransfer PLMarks are created or adjusted, sourced from the
transfer fees

◦ Cleared trade PLMarks are created or adjusted, sourced from the
<valuation> elements in each <trade>

10.2.1 Trades with flows in multiple currencies

CDML allows the same cleared <trade> element to contain flows in more than one
currency. Given that the transfer trade grouping includes the currency, this means that
a single cleared trade can contribute to one or more clearing transfer trades:

20 Today this is equivalent to the product type (e.g. IRD, NDF, CDX), but Clearing Service is aimed to
be a super set of it, not bound to products only

21 Using currency default's settle lag configuration
22 MTM flows will cancel each other
23 That is, flows/fees haven't changed

C a l y p s o I n t e g r a t e d C l e a r i n g 88/118

CDML Developer Guide CDML v3 spec 2014-10-23

its flows will be separated to match the latter's settle currency.

For instance, the following unlikely cleared trade

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<cdml-tv:tradeValuationReport modelVersion="2" version="1" generationDateTime="2014-03-

13T00:00:00-07:00" xmlns:cdml="urn:cdml:schema:common:types" xmlns:cdml-

im="urn:cdml:schema:margin:initialMargin" xmlns:cdml-

tv="urn:cdml:schema:position:tradeValuation">

 <cdml:reportDate>2014-03-13</cdml:reportDate>

 <cdml-tv:trade>

 <cdml-tv:clearedTradeId>1329237</cdml-tv:clearedTradeId>

 <cdml-tv:CCP>CME</cdml-tv:CCP>

 <cdml-tv:clearingService>IRD</cdml-tv:clearingService>

 <cdml-tv:memberId>4Q0</cdml-tv:memberId>

 <cdml-tv:positionAccountId>AAAA</cdml-tv:positionAccountId>

 <cdml-tv:segregationAccount>C</cdml-tv:segregationAccount>

 <cdml-tv:tradeCashFlowData>

 <cdml-tv:flow settleCcy="JPY" type="NPV_ADJUSTED" amount="36243675"/>

 <cdml-tv:flow settleCcy="JPY" type="NPV_REV" amount="-36271779"/>

 <cdml-tv:flow settleCcy="JPY" type="VARIATION" amount="-28104"/>

 <cdml-tv:flow settleCcy="JPY" type="PAI" amount="72"/>

 <cdml-tv:flow settleCcy="USD" type="VARIATION" amount="120.12"/>

 <cdml-tv:flow settleCcy="USD" type="PAI" amount="15.95"/>

 <cdml-tv:flow settleCcy="JPY" type="UPFRONT_FEE" amount="0"/>

 <cdml-tv:flow settleCcy="JPY" type="COUPON" amount="0"/>

 </cdml-tv:tradeCashFlowData>

 </cdml-tv:trade>

</cdml-tv:tradeValuationReport>

contains flows in JPY and USD. Two trades need to be created, one for each currency

C a l y p s o I n t e g r a t e d C l e a r i n g 89/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 67: Transfer trades created for JPY and USD. Note the trade characteristics are the same,
except for the currency and flows. Settle dates also change, due to the fact that JPY has a different
settle lag

10.2.2 Flow/fee settle date override

There are some cases in which the standard settle date calculation logic is not valid,
and needs to be overridden. This can be signaled by populating the flow/@settleDate
attribute

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<cdml-tv:tradeValuationReport modelVersion="2" version="1" generationDateTime="2014-03-

13T00:00:00-07:00" xmlns:cdml="urn:cdml:schema:common:types" xmlns:cdml-

im="urn:cdml:schema:margin:initialMargin" xmlns:cdml-

tv="urn:cdml:schema:position:tradeValuation">

 <cdml:reportDate>2014-03-13</cdml:reportDate>

 <cdml-tv:trade>

 <cdml-tv:clearedTradeId>1329237</cdml-tv:clearedTradeId>

 <cdml-tv:CCP>CME</cdml-tv:CCP>

 <cdml-tv:clearingService>IRD</cdml-tv:clearingService>

 <cdml-tv:memberId>4Q0</cdml-tv:memberId>

 <cdml-tv:positionAccountId>AAAA</cdml-tv:positionAccountId>

 <cdml-tv:segregationAccount>C</cdml-tv:segregationAccount>

C a l y p s o I n t e g r a t e d C l e a r i n g 90/118

CDML Developer Guide CDML v3 spec 2014-10-23

 <cdml-tv:tradeCashFlowData>

 <cdml-tv:flow settleCcy="JPY" type="NPV_ADJUSTED" amount="36243675"/>

 <cdml-tv:flow settleCcy="JPY" type="NPV_REV" amount="-36271779"/>

 <cdml-tv:flow settleCcy="JPY" type="VARIATION" amount="-28104"/>

 <cdml-tv:flow settleCcy="JPY" type="PAI" amount="72"

settleDate="2014-03-14"/>

 <cdml-tv:flow settleCcy="USD" type="VARIATION" amount="120.12"/>

 <cdml-tv:flow settleCcy="USD" type="PAI" amount="15.95"/>

 <cdml-tv:flow settleCcy="JPY" type="UPFRONT_FEE" amount="0"/>

 <cdml-tv:flow settleCcy="JPY" type="COUPON" amount="0"/>

 </cdml-tv:tradeCashFlowData>

 </cdml-tv:trade>

</cdml-tv:tradeValuationReport>

Illustration 68: Resulting transfer trade, with overridden PAI settle date

C a l y p s o I n t e g r a t e d C l e a r i n g 91/118

CDML Developer Guide CDML v3 spec 2014-10-23

10.3 Processing the initialMarginReport
The initial margin data is already aggregated at margin account level, so there's no
need for an initial classification. Here are the main steps in IM processing

• For every <initialMarginData> element

◦ Locate the client-facing24 MCC (see 10.3.2 Locating contracts)

▪ If none found or more than one is found, an error is logged, and nothing
happens

▪ If only one is found, process continues with it

• Measures are grouped by currency. See 10.3.1 Requirement vs. native
margins on how the measure or measure breakdown is selected

• Currency set is completed in case the MCC declares more eligible
currencies than the ones found in CDML

◦ Measure amounts in those currencies will be zeros (0)

• For every currency, a collateral exposure is located

◦ If none exists, a new one is created

• PLMarks are created or adjusted

◦ Locate the CCP-facing MCC25, and proceed as with the client-facing one

10.3.1 Requirement vs. native margins

Before CDML, the choice of importing the margins in native or requirement currency
was driven by the CLEARING_BO_MARGIN ST configuration.

With CDML, the configuration has to be done at MCC level, as the
CLEARING_PROCESS_FROM_CDML is the same for all report types. The additional field is
IM_IMPORT_CURRENCY

24 An MCC whose LE is not the CCP
25 See 10.3.4 for comments on the Intraday case

C a l y p s o I n t e g r a t e d C l e a r i n g 92/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 69: IM_IMPORT_CURRENCY allowed values. Default value is blank, which is equivalent to
Converted. Converted is the currency of the requirement, vs. Native, which is the activity currency

For instance, running CDML IM processing with this report

C a l y p s o I n t e g r a t e d C l e a r i n g 93/118

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<cdml-im:initialMarginReport modelVersion="2" version="2" generationDateTime="2014-01-28T17:33:00-08:00"

xmlns:cdml="urn:cdml:schema:common:types" xmlns:cdml-im="urn:cdml:schema:margin:initialMargin" xmlns:cdml-

tv="urn:cdml:schema:position:tradeValuation">

 <cdml:reportDate>2014-03-06</cdml:reportDate>

 <cdml-im:initialMarginData>

 <cdml-im:CCP>CME</cdml-im:CCP>

 <cdml-im:clearingService>IRD</cdml-im:clearingService>

 <cdml-im:memberId>4Q0</cdml-im:memberId>

 <cdml-im:initialMarginAccountId>AAAA</cdml-im:initialMarginAccountId>

 <cdml-im:segregationAccount>C</cdml-im:segregationAccount>

 <cdml-im:measures>

 <cdml-im:measure requirementCcy="USD" type="MAINTENANCE_REQUIREMENT" amount="6071962.6400000015">

 <cdml-im:measureBreakdown nativeCcy="JPY" amount="250135459.94" conversionFX="0.009718173"/>

 <cdml-im:measureBreakdown nativeCcy="EUR" amount="1967990.43" conversionFX="1.3668671405"/>

 <cdml-im:measureBreakdown nativeCcy="USD" amount="255594.41" conversionFX="1"/>

 <cdml-im:measureBreakdown nativeCcy="MXN" amount="98637.25" conversionFX="0.0754403832"/>

 <cdml-im:measureBreakdown nativeCcy="GBP" amount="381162.42" conversionFX="1.6583747927"/>

 <cdml-im:measureBreakdown nativeCcy="CAD" amount="62435.33" conversionFX="0.8965393581"/>

 </cdml-im:measure>

 <cdml-im:measure requirementCcy="USD" type="INITIAL_MARGIN" amount="6679158.899999999"/>

 </cdml-im:measures>

 </cdml-im:initialMarginData>

</cdml-im:initialMarginReport>

and the OOTB configuration (blank/Converted) results in USD-only marks

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 70: Only USD marks imported. Other eligible currencies are filled with zeros

Changing the configuration to Native

C a l y p s o I n t e g r a t e d C l e a r i n g 95/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 71: IM_IMPORT_CURRENCY set to Native

makes the breakdown to be imported

C a l y p s o I n t e g r a t e d C l e a r i n g 96/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 72: Margin requirement is now broken down to the native currencies. Note the CCP-facing
ones (CALYPUS-C) haven't been updated, as the CCP-facing MCC hasn't been reconfigured

Running the process the same day, with different contract
configuration, is not supported. It has been done here just for the
purpose of showing both results, and it is not guaranteed to work.

10.3.2 Locating contracts

Client- and CCP-facing MCCs are located in a similar way. Given an
<initialMarginData> element, such as

<cdml-im:initialMarginData>

 <cdml-im:CCP>CME</cdml-im:CCP>

 <cdml-im:clearingService>IRD</cdml-im:clearingService>

 <cdml-im:memberId>4Q0</cdml-im:memberId>

 <cdml-im:initialMarginAccountId>AAAA</cdml-im:initialMarginAccountId>

 <cdml-im:segregationAccount>C</cdml-im:segregationAccount>

 ...

it is expected that only two contracts in the system will match such configuration: a
client-facing one, and a CCP-facing one.

C a l y p s o I n t e g r a t e d C l e a r i n g 97/118

CDML Developer Guide CDML v3 spec 2014-10-23

The common part of the loading retrieves all contracts

• For the given PO (<memberId>)

• With CCP contract additional field equal to the <CCP> element

• With MARGIN_TYPE additional field set to IM

• With PRODUCT_TYPE additional field equal to the <clearingService> element

In addition, when locating CCP-facing contracts

• Only contracts whose LE is the CCP are kept

• The CCP_REFERENCE additional field has to match the <segregationAccount>
element

When locating client-facing contracts

• Only contracts whose LE is not the CCP are kept

• The CCP_REFERENCE additional field has to match the
<initialMarginAccountId> element

The contracts found for the snippet above would look like

Illustration 73: CCP-facing contract. Note the CME LE, and CCP_REFERENCE=C

C a l y p s o I n t e g r a t e d C l e a r i n g 98/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 74: Client-facing contract, with a different LE, and CCP_REFERENCE=AAAA

10.3.3 MARGIN_CALL measure

As seen in Illustration 70 or Illustration 72, the MARGIN_CALL PLMark value is being
stored, but it is not coming from CDML. That is to honor the legacy pre-CDML
clearing setup: MARGIN_CALL is computed as

MARGIN_CALL = MAINTENANCE_REQUIREMENT * MCC Credit Multiplier

MARGIN_CALL is the measure used in Collateral Valuation, and it won't be auto-
computed, so it has to be recorded during CDML processing.

Illustration 75: Credit Multiplier for a client-facing contract. Credit Multiplier can be found in the Initial
Margin MCC tab

C a l y p s o I n t e g r a t e d C l e a r i n g 99/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 76: CCP-facing contract multiplier. OOTB value is 0, so, in terms of the MARGIN_CALL
computation, it's considered to be 1: CCP-facing contracts encode margins as requested by the CCP,
so it doesn't make sense to apply a multiplier, that would cause MAINTENANCE_REQUIREMENT and
MARGIN_CALL to be different

10.3.4 Intraday processing

When the intraday flag introduced in 7.2.1 is present in the CDML IM report, the
following behavior changes occur

• The multiplier mechanism described in 10.3.3 is disabled OOTB. To force the
multiplier to be applied ITD, the PO LE must be configured with the attribute
ApplyBufferITD=true

• Only client-facing exposures are created/updated. CCP-facing contracts are
ignored

• MCC ITD pricing environment is used for the PLMark creation, and mark values
are tagged with an “ITD” comment

C a l y p s o I n t e g r a t e d C l e a r i n g 100/118

CDML Developer Guide CDML v3 spec 2014-10-23

11 Appendix A: messaging (logging and
TaskStation)

All CDML code, both core translation framework, processing, and everything in
between, uses MessageSink to log information.

C a l y p s o I n t e g r a t e d C l e a r i n g 101/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 77: MessageSink hierarchy, showing the two main implementations,
TaskMessageSink and LogMessageSink

Logging tends to be repetitive and include sizable chunks of copy-and-paste, and useful

C a l y p s o I n t e g r a t e d C l e a r i n g 102/118

CDML Developer Guide CDML v3 spec 2014-10-23

logging usually implies aggregating non-trivial amounts of information, in place, which
distracts the reader from the actual processing code.

MessageSink was created to address this, and other shortcomings

• Abstraction from underlying logging framework (yet another): CDML core
code started as a module that could be distributed separate from Calypso, w/o
any guarantee to have access to Log and related classes

• Performance: current logging solution requires to compose the String
argument before logging. It is preferable to pass the raw objects to be logged,
and defer the composing to later stages. Sometimes that logging could even not
happen (e.g. DEBUG not active), or it could be done in a separate thread

• Messaging and API uniformity between log files, and Task Station: most
CDML produced messages will look the same in Task Station and in the log file,
which allows better tracking of what's going behind the scenes, if the log file is
ever needed. Also, API calls are the same, regardless the destination

• Easier, cleaner logging: by encapsulating common operations, and simplifying
the use of String formatting

Illustration 78: Example of sinking a variable error message, with two parameters, reportType and
reportDate

11.1 MessageSinkConfigurable
MessageSinkConfigurable instances delegate their logging/messaging on the
MessageSink they're configured with. Also, most of them will pass such
MessageSink to their instance variables, if they happen to be
MessageSinkConfigurable too.

C a l y p s o I n t e g r a t e d C l e a r i n g 103/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 79: MessageSinkConfigurable partial hierarchy

Both CDML producing and consuming scheduled tasks are
MessagingSinkConfigurable themselves, and they pass the MessageSink to all
downstream processing classes, thus making it the unified sink for most CDML
processing.

C a l y p s o I n t e g r a t e d C l e a r i n g 104/118

CDML Developer Guide CDML v3 spec 2014-10-23

11.2 CDML scheduled task MessageSink

Illustration 80: ScheduledTaskMessageSink hierarachy detail

As mentioned in 11.2, the CDML scheduled tasks unify all processing logging/messaging
by using a common MessageSink.

Illustration 81: MessageSink that all the ST based CDML processing share

As seen in the illustration above, such sink is composed of

• A logging one: every message, regardless it's type, will be passed to the
underlying Calypso Log framework

• A chained TaskStation-capable one, which will filter out debug or trace messages

C a l y p s o I n t e g r a t e d C l e a r i n g 105/118

CDML Developer Guide CDML v3 spec 2014-10-23

12 Appendix B: CDMLViewer
The CDMLViewer is the evolution of the previous ClearingDataViewer, but simplified,
due to the simple nature of CDML. It shows all CDML instances stored in DB, for a
given date range.

The action for MainEntry/Navigator Customizer is cdml.CDMLViewerFrame.

Illustration 82: Added as CDMLViewer to customizer

Illustration 83: Viewer loading usage

C a l y p s o I n t e g r a t e d C l e a r i n g 106/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 84: CDML is never deleted: new versions are stored every time
CLEARING_TRANSLATE_TO_CDML, or other CDMLBackend save operation, are invoked. Only the
latest version is used by downstream processes (e.g. CLEARING_PROCESS_FROM_CDML)

Illustration 85: Sorting by version. All columns can be used for sorting

C a l y p s o I n t e g r a t e d C l e a r i n g 107/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 86: Selecting a row makes the CDML instance content to be displayed in the lower
panel

C a l y p s o I n t e g r a t e d C l e a r i n g 108/118

CDML Developer Guide CDML v3 spec 2014-10-23

13 Appendix C: CDML translator distribution and
artifact structure

Although not mandatory, it is highly recommended to package CDML translator
distribution following the standard approach, which means

• Single module project

• One artifact per distribution26

• <translator name>CDMLSchemaData.xml ExecuteSQL file in bin/dbscripts,
declaring the translator name

Illustration 87: CME translator distribution structure, with SchemaData.xml detail

Translator artifact (read: jar) structure is more lenient. The only true requisite is to pack
the Spring context at the artifact's root

Illustration 88: Exploded artifact

26 Not counting approved 3rd party dependencies

C a l y p s o I n t e g r a t e d C l e a r i n g 109/118

CDML Developer Guide CDML v3 spec 2014-10-23

14 Appendix D: CDML translator deploy strategies

14.1 Calypso V13
Calypso V13 instances are flexible enough to allow any deployment desired. The
simplest one is to unzip the distribution proposed in 13 Appendix C: CDML translator
distribution and artifact structure on the Calypso folder, and add the translator artifact
to the Calypso classpath.

Illustration 89: /bin/dbscripts and /jars Calypso folders with the translator files deployed

Illustration 90: calypso.sh classpath script edited, with the suggested wildcard
addition. This way, all translators following standard naming practices will be
included

C a l y p s o I n t e g r a t e d C l e a r i n g 110/118

CDML Developer Guide CDML v3 spec 2014-10-23

14.2 Calypso V14 and after
Calypso V14 is more strict in terms of deployment. Two approaches are available:
patching the translation distribution, or using the custom-extensions mechanism.

14.2.1 Patching the distribution

This mechanism is the recommended one when generating the distribution zip is
not an issue (e.g. with access to the Calypso Build System). The patching is then
trivial

~/calypso-14.0.0.22.SP2$./patch.sh /tmp/calypso-cdml-cme-1.0.0-SNAPSHOT-rel.zip

Executing task: patch

[19:24:49.017] Currently installed modules: [calypso-ers-14.0.0.22.SP2, calypso-position-

keeping-1.0.9, calypso-exchange-feed-cme-2.1.2-14.0.0.21.SP2, calypso-ateo-1.0.0-SNAPSHOT,

calypso-bloomberg-1.5.1, calypso-exchange-feed-core-2.0.8-14.0.0.21.SP2, calypso-module-

distribution-14.0.0.22.SP2, calypso-liquidity-1.2.3, calypso-datauploader-3.1.24-

14.0.0.22.SP2.HRC-SNAPSHOT, calypso-exchange-feed-lch-2.0.6-14.0.0.18, calypso-clearing-

3.2.0, calypso-collateral-1.6.1.1-14.0.0.22.SP2, calypso-cdsisdamodel-14.0.0.22.SP2]

[19:24:49.035] Using Calypso patcher version 1.0.4

[19:24:49.371] Patching calypso-cdml-cme-1.0.0-SNAPSHOT-rel.zip

[19:24:49.388] Do you want to continue? [Y/n]

14.2.2 Using custom-extensions

Refer to V14 documentation before attempting this approach.

If the Calypso Build System (read: Jenkins, Nexus) is not available, it is possible to
create and patch the distribution using the build system that ships with Calypso V14.

C a l y p s o I n t e g r a t e d C l e a r i n g 111/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 91: The custom-extensions folder, with
detail on custom-projects

Given that the CDML translators are meant to be run by the
CLEARING_TRANSLATE_TO_CDML ScheduledTask, they can be modeled after the
custom-client sample project.

C a l y p s o I n t e g r a t e d C l e a r i n g 112/118

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 92: custom-cdml-translator project. Structure and build.gradle file have been
copied from custom-client, and the CME sources over it, as demo content. Also, detail on the
custom-extensions/settings.gradle, with the new project added to the build process

The latest clearing distribution must have been already patched, either
individually, or as the latest CUP, before building the custom projects. The clearing
distribution includes the core CDML classes, and these need to be part of the build
classpath.

For the purpose of this demo, the unneeded projects can be commented out from
settings.gradle to speed up the build process

// Custom project types

include ':custom-projects:custom-shared-lib'

//include ':custom-projects:custom-client'

include ':custom-projects:custom-cdml-translator'

include ':custom-projects:custom-dataserver-services'

include ':custom-projects:custom-engine'

//include ':custom-projects:custom-cbsl:custom-cbsl-api'

C a l y p s o I n t e g r a t e d C l e a r i n g 113/118

CDML Developer Guide CDML v3 spec 2014-10-23

//include ':custom-projects:custom-cbsl:custom-cbsl-data'

//include ':custom-projects:custom-cbsl:custom-cbsl-impl'

// Deployable wars

include ':dataserver-deployment-war'

include ':engineserver-deployment-war'

include ':cbsl-deployment-war'

From the custom-extensions folder, deploy is run27

:~/calypso-14.0.0.22.SP2/custom-extensions$./bld deploy

:unpackWars UP-TO-DATE

:custom-projects:custom-shared-lib:compileJava UP-TO-DATE

:custom-projects:custom-shared-lib:processResources UP-TO-DATE

:custom-projects:custom-shared-lib:classes UP-TO-DATE

:custom-projects:custom-shared-lib:jar UP-TO-DATE

:custom-projects:custom-cdml-translator:compileJava UP-TO-DATE

:custom-projects:custom-cdml-translator:processResources UP-TO-DATE

:custom-projects:custom-cdml-translator:classes UP-TO-DATE

:custom-projects:custom-cdml-translator:jar UP-TO-DATE

:custom-projects:custom-dataserver-services:compileJava UP-TO-DATE

:custom-projects:custom-dataserver-services:processResources UP-TO-DATE

…

SCRIPT SUCCESSFUL

BUILD SUCCESSFUL

Total time: 3 mins 20.751 secs

Now the client side is patched with the custom project

ecorral@demeter-pro:~/calypso-14.0.0.22.SP2$ ls -l client/lib/*custom-cdml*

-rw-r--r-- 1 ecorral ecorral 13849 Mar 14 20:02 client/lib/custom-cdml-translator-1.0.0-

SNAPSHOT.jar

27 Truncated output, too long to display here

C a l y p s o I n t e g r a t e d C l e a r i n g 114/118

CDML Developer Guide CDML v3 spec 2014-10-23

15 Appendix E: CDML versioning
CDML is a versioned specification: as it evolves and changes, the need to identify the
current version, and if a given CDML instance abides by it, will become mandatory.

The CDML version is a short integer number, although it can be represented in
several ways, to improve readability or file naming.

The model/specification version is not to be confused with a given
CDML report instance version. See 7.2.1
urn:cdml:schema:common:types for details.

15.1 Version as defined in the specification
As seen in 7.2.1, the modelVersion attribute declares the specification version
under which the CDML instance was created

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<cdml-im:initialMarginReport modelVersion="2" version="1" generationDateTime="2014-03-
11T00:00:00-07:00" xmlns:cdml="urn:cdml:schema:common:types" xmlns:cdml-

im="urn:cdml:schema:margin:initialMargin" xmlns:cdml-

tv="urn:cdml:schema:position:tradeValuation">

 <cdml:reportDate>2014-03-13</cdml:reportDate>

 <cdml-im:initialMarginData>

...

The attribute is modeled after

<simpleType name="ReportModelVersionType">

 <restriction base="short">

 <minInclusive value="0" />

 </restriction>

</simpleType>

As a restricted short datatype, allowed values are the ones between 0 and 32767.

15.2 Version in human readable form
When displayed in a document meant for human consumption, the “v” character is
prepended to the actual version number, and no left padding is used. The headers of
this document show an example of this representation (CDML v3 spec).

15.3 Version when naming XSD and other CDML related
files

For easy sorting purposes, the version number is left padded with zeros, up to
three (3) characters, when naming the XSDs schemas, or other related documents.

C a l y p s o I n t e g r a t e d C l e a r i n g 115/118

http://www.w3.org/TR/xmlschema-2/#short

CDML Developer Guide CDML v3 spec 2014-10-23

Illustration 93: CDML v2 schema files

C a l y p s o I n t e g r a t e d C l e a r i n g 116/118

15.4 CDML version history

modelVersion Human readable form File naming form Version highlights Clearing release28

0 v0 000 Internal development release N/A

1 v1 001 Initial release 2.7.0/3.2.0

2 v2 002 EMIR changes 2.9.0/3.4.0

3 v3 003 Intraday support 2.11.0/3.6.0

28 Clearing release that first included the given version

CDML Developer Guide CDML v3 spec 2014-10-23

16 Related documentation
CDML autogenerated documentation

in Box
https://calypso.box.com/s/al7tz1v2z4djifstsavx

CDML Processing rules in Box https://calypso.box.com/s/khx18p3sfew9ttj4uvdx

CDML Translators in Box https://calypso.box.com/s/jyg5yqq367bqt4tza0ib

W3C XML Essentials http://www.w3.org/standards/xml/core

W3C XML Schema http://www.w3.org/standards/xml/schema

Spring 3.0.X reference http://docs.spring.io/spring/docs/3.0.x/spring-framework-
reference/html/

Java API for XML processing http://docs.oracle.com/javase/tutorial/jaxp/

C a l y p s o I n t e g r a t e d C l e a r i n g 118/118

http://docs.oracle.com/javase/tutorial/jaxp/
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/
http://www.w3.org/standards/xml/schema
http://www.w3.org/standards/xml/core
https://calypso.box.com/s/jyg5yqq367bqt4tza0ib
https://calypso.box.com/s/khx18p3sfew9ttj4uvdx

	1 Summary
	2 Table of Contents
	3 Changes
	4 Definitions
	5 What is CDML?
	6 The CDML flow: translation and processing
	7 CDML types
	7.1 General characteristics
	7.2 Schema namespaces
	7.2.1 urn:cdml:schema:common:types
	7.2.2 urn:cdml:schema:margin:initialMargin
	7.2.2.1 initialMarginReport document
	7.2.2.2 initialMarginData element
	7.2.2.3 measures element
	7.2.2.4 initialMarginPositionAccountData element

	7.2.3 urn:cdml:schema:position:tradeValuation
	7.2.3.1 tradeValuationReport document
	7.2.3.2 trade element
	7.2.3.3 tradeCashFlowData element
	7.2.3.4 tradeValuationData element

	8 Generating content: CDMLProducer
	8.1 NEW EOD vs ITD
	8.2 Producer types
	8.2.1 FileLoaderProducer
	8.2.2 NEW AbstractSourceTranslationProducer
	8.2.2.1.1 AbstractTabularTranslationProducer
	8.2.2.1.2 NEW AbstractXMLTranslationProducer

	8.3 The CDML_TRANSLATE_TO_CDML ScheduledTask
	8.3.1 Arguments
	8.3.1.1 Base Folder
	8.3.1.2 CDML Processing
	8.3.1.3 NEW Intraday flag

	8.3.2 CCP subfolders
	8.3.2.1 NEW Arbitrary CCP subfolders

	8.3.3 CDMLProducer discovery mechanism
	8.3.4 CDML storage
	8.3.5 ST execution summary

	9 Writing a CDML translator
	9.1 NEW Source and SourceFileOrganizer
	9.2 Tabular translators
	9.2.1 Use case: CME IRD translator
	9.2.1.1 Translation instructions
	9.2.1.2 Source and source file organizer
	9.2.1.3 Parser implementations
	9.2.1.3.1 SourceParser
	9.2.1.3.2 StreamingSourceParser

	9.2.1.4 Translation processors
	9.2.1.4.1 CMEInitialMarginTranslationProcessor
	9.2.1.4.2 CMETradeValuationTranslationProcessor
	NEW AggregatingFlowGroupBuilder

	9.2.1.5 Orchestrating the process: the CDMLProducer implementation
	9.2.1.5.1 Filtering sources
	9.2.1.5.2 Row acceptor
	9.2.1.5.3 Providing parser implementations
	9.2.1.5.4 Source file presence check

	9.2.1.6 The Spring context

	9.2.2 Use case: LCH IRD translator
	9.2.2.1 Translation instructions
	9.2.2.2 Source and source file organizer
	9.2.2.3 Translation processors
	9.2.2.3.1 LCHInitialMarginTranslationProcessor
	9.2.2.3.2 Populating the report from different sources: the OSA/ISA accounts case
	9.2.2.3.3 LCHTradeValuationTranslationProcessor
	9.2.2.3.4 Parsing coupons

	9.2.2.4 LCHProducer
	9.2.2.4.1 Filtering sources
	9.2.2.4.2 Row acceptor
	9.2.2.4.3 Parser implementations
	9.2.2.4.4 Spring context

	9.3 NEW XML translators
	9.3.1 From input files, to javax.xml.transform.Source instances
	9.3.2 DefaultXMLTranslationProducer and ResourceMergingSourceProvider
	9.3.3 Use case: EUREX IRD translator
	9.3.3.1 Spring file
	9.3.3.2 XSLT instructions

	10 Processing CDML
	10.1 The CLEARING_PROCESS_FROM_CDML ScheduledTask
	10.1.1 Arguments
	10.1.1.1 CDML Report Type
	10.1.1.2 Pricing Environment

	10.1.2 Execution summary

	10.2 Processing the tradeValuationReport
	10.2.1 Trades with flows in multiple currencies
	10.2.2 Flow/fee settle date override

	10.3 Processing the initialMarginReport
	10.3.1 Requirement vs. native margins
	10.3.2 Locating contracts
	10.3.3 MARGIN_CALL measure
	10.3.4 Intraday processing

	11 Appendix A: messaging (logging and TaskStation)
	11.1 MessageSinkConfigurable
	11.2 CDML scheduled task MessageSink

	12 Appendix B: CDMLViewer
	13 Appendix C: CDML translator distribution and artifact structure
	14 Appendix D: CDML translator deploy strategies
	14.1 Calypso V13
	14.2 Calypso V14 and after
	14.2.1 Patching the distribution
	14.2.2 Using custom-extensions

	15 Appendix E: CDML versioning
	15.1 Version as defined in the specification
	15.2 Version in human readable form
	15.3 Version when naming XSD and other CDML related files
	15.4 CDML version history

	16 Related documentation

